K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2020

Phân tích ? -.-

Tớ xài Bézout nhé :)

4x3 + 8x2 + x - 3 

Thử với x = -1 ta có : 4.(-1)3 + 8.(-1)2 + (-1) - 3 = 0

Vậy -1 là nghiệm của đa thức . Theo hệ quả của định lí Bézout thì đa thức trên chia hết cho x + 1 

Thực hiện phép chia 4x3 + 8x2 + x - 3 cho x + 1 ta được 4x2 + 4x - 3

Ta có : 4x2 + 4x - 3 = 4x2 - 2x + 6x - 3

                               = 2x( 2x - 1 ) + 3( 2x - 1 )

                               = ( 2x - 1 )( 2x + 3 )

=> 4x3 + 8x2 + x - 3 = ( x + 1 )( 2x - 1 )( 2x + 3 )

7 tháng 9 2020

\(4x^3+8x^2+x-3=\left(4x^3+4x^2\right)+\left(4x^2+4x\right)-\left(3x+3\right)\)

\(=4x^2\left(x+1\right)+4x\left(x+1\right)-3\left(x+1\right)\)

\(=\left(x+1\right)\left(4x^2+4x-3\right)\)

\(=\left(x+1\right)\left[\left(4x^2-2x\right)+\left(6x-3\right)\right]\)

\(=\left(x+1\right)\left[2x\left(2x-1\right)+3\left(2x-1\right)\right]\)

\(=\left(x+1\right)\left(2x-1\right)\left(2x+3\right)\)

\(a/\)

\(4x-4y+x^2-2xy+y^2\)

\(=\left(4x-4y\right)+\left(x^2-2xy+y^2\right)\)

\(=4\left(x-y\right)+\left(x-y\right)^2\)

\(=\left(x-y\right)\left(4+x-y\right)\)

\(b/\)

\(x^4-4x^3-8x^2+8x\)

\(=\left(x^4+8x\right)-\left(4x^3+8x^2\right)\)

\(=x\left(x^3+8\right)-4x^2\left(x+2\right)\)

\(=x\left(x+2\right)\left(x^2-2x+4\right)-4x^2\left(x+2\right)\)

\(=x\left(x+2\right)\left(x^2-2x+4-4x\right)\)

\(=x\left(x+2\right)\left(x^2-6x-4\right)\)

\(d/\)

\(x^4-x^2+2x-1\)

\(=x^4-\left(x-1\right)^2\)

\(=\left(x^2+x-1\right)\left(x^2-x+1\right)\)

\(e/\)(Xem lại đề)

\(x^4+x^3+x^2+2x+1\)

\(=\left(x^4+x^3\right)+\left(x^2+2x+1\right)\)

\(=x^3\left(x+1\right)+\left(x+1\right)^2\)

\(=\left(x+1\right)\left(x^3+x+1\right)\)

\(f/\)

\(x^3-4x^2+4x-1\)

\(=x\left(x^2-4x+4\right)-1^2\)

\(=x\left(x-2\right)^2-1\)

\(=[\sqrt{x}\left(x-2\right)]^2-1\)

\(=[\sqrt{x}\left(x-2\right)-1][\sqrt{x}\left(x-2\right)+1]\)

\(c/\)

\(x^3+x^2-4x-4\)

\(=\left(x^3-2x^2\right)+\left(3x^2-6x\right)+\left(2x-4\right)\)

\(=x^2\left(x-2\right)+3x\left(x-2\right)+2\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2+3x+2\right)\)

\(=\left(x-2\right)[\left(x^2+x\right)+\left(2x+2\right)]\)

\(=\left(x-2\right)\left(x+1\right)\left(x+2\right)\)

24 tháng 5 2021

a) x2 + xy + y - 1 = (x2 - 1) + (xy + y) = (x - 1)(x + 1) + y(x + 1) = (x + 1)(x + y - 1)

b) 4 - x2 + 2xy - y2 = 4 - (x2 - 2xy + y2) = 4 - (x - y)2 = (x - y + 2)(4 - x + y) 

c) 8x2 - 18y2 = 2(4x2 - 9y2) = 2[(2x)2 - (3y)2] = 2(2x - 3y)(2x + 3y)

d) 8x3 - 4x2 - 6xy - 9y2 - 27y3

= (8x3 - 27y3) - (4x2 + 6xy + 9y2)

= (2x - 3y)(4x2 + 6xy + 9y2) - (4x2 + 6xy + 9y2)

= (2x - 3y - 1)(4x2 + 6xy + 9y2)

e) 4x2 - x - 3 = 4x2 - 4x + 3x - 3 = 4x(x - 1) + 3(x - 1) = (x - 1)(4x + 3)

f) 4x2 - 8x + 3 = 4x2 - 2x - 6x + 3 = 2x(2x - 1) - 3(2x - 1) = (2x - 3)(2x - 1)

24 tháng 5 2021

cảm ơn bạn

10 tháng 10 2017

a) (x2-6xy+9y2):(3y-x)

= (x-3y)2:(3y-x)

=(3y-x)2:(3y-x)

= 3y-x

b) (8x3-1):(4x2+2x+1)

=[(2x)3-1]:(4x2+2x+1)

= (2x-1)(4x2+2x+1):(4x2+2x+1)

= 2x-1

10 tháng 10 2017

c) (4x4-9):(2x2-3)

=(2x2-3)(2x2+3):(2x2-3)

=2x2+3

d) (8x3-27):(4x2+6x+9)

=(2x-3)(4x2+6x+9):(4x2+6x+9)

=2x-3

27 tháng 10 2019

a) Theo mình thì chỉ min thôi nhé!

\(A=\frac{8x^2-1}{4x^2+1}+1+11=\frac{12x^2}{4x^2+1}+11\ge11\)

b)Bạn rút gọn lại giùm mìn, lười quy đồng lắm:(

b: \(\Leftrightarrow32x^5+1-32x^5+1=2\)

=>2=2(luôn đúng)

a: \(\Leftrightarrow\left[\left(x-3\right)^2-\left(x+3\right)^2\right]\left[\left(x-3\right)^2+\left(x+3\right)^2\right]+24x^3=216\)

\(\Leftrightarrow-12x\left(2x^2+18\right)+24x^3=216\)

=>-216x=216

hay x=-1

18 tháng 9 2018

a) \(4x-4y+x^2-2xy+y^2\)

\(=4\left(x-y\right)+\left(x-y\right)^2\)

\(=\left(x-y\right)\left(4+x-y\right)\)

b) \(x^4-4x^3-8x^2+8x\)

\(=x^4+2x^3-6x^3-12x^2+4x^2+8x\)

\(=x^3\left(x+2\right)-6x^2\left(x+2\right)+4x\left(x+2\right)\)

\(=\left(x+2\right)\left(x^3-6x^2+4x\right)\)

\(=x\left(x+2\right)\left(x^2-6x+4\right)\)

c) \(x^3+x^2-4x-4\)

\(=x^3-2x^2+3x^2-6x+2x-4\)

\(=x^2\left(x-2\right)+3x\left(x-2\right)+2\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2+3x+2\right)\)

\(=\left(x-2\right)\left(x^2+2x+x+2\right)\)

\(=\left(x-2\right)\left[x\left(x+2\right)+\left(x+2\right)\right]\)

\(=\left(x-2\right)\left(x+2\right)\left(x+1\right)\)

d) \(x^4-x^2+2x-1\)

\(=x^4-\left(x^2-2x+1\right)\)

\(=x^4-\left(x-1\right)^2\)

\(=\left(x^2\right)^2-\left(x-1\right)^2\)

\(=\left(x^2-x+1\right)\left(x^2+x-1\right)\)

e)Sửa đề \(x^4+x^3+x^2-1\)

\(=x^3\left(x+1\right)+\left(x-1\right)\left(x+1\right)\)

\(=\left(x+1\right)\left(x^3+x-1\right)\)

f) \(x^3-4x^2+4x-1\)

\(=x^3-x^2-3x^2+3x+x-1\)

\(=x^2\left(x-1\right)-3x\left(x-1\right)+\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2-3x+1\right)\)

23 tháng 8 2016

a/ (x - 1)(x - √3 + 2)(x + √3 + 2)

23 tháng 8 2016

a ) \(x^3+3x^2-3x+1\)

    \(=x^3-3x+3x^2-1\)

     \(=\left(x-1\right)^3\)

   

30 tháng 9 2019

a 4x -4y +(x-y)^2

=4(x-y)+(x-y).(x-y)

=(x-y).(4+x-y)

c x^2(x+1)-4(x+1)

(x+1).(x^2-4)

d x^4-(x^2-2x+1)

=x^4-(x-1)^2

=x^2(x-x+1)(x-x-1)

MIK KO BIT DUNG HAY KO CON B THI MIK KO BIET LAM

30 tháng 9 2019

Câu b dễ thôi

\(x^4-4x^3-8x^2+8x\)

\(=x\left(x^3-4x^2-8x+8\right)\)

\(=x\left(x+2\right)\left(x^2-6x+4\right)\)