Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{4x-8}{2x^2+1}=0\)
\(\Rightarrow4x-8=0\left(2x^2+1\ne0\right)\)
\(\Leftrightarrow4x=8\)
\(\Leftrightarrow x=2\)
Vậy x=2
b)
\(\frac{x^2-x-6}{x-3}=0\)
\(\Leftrightarrow\frac{\left(x-3\right)\left(x+2\right)}{x-3}=0\)
\(\Rightarrow x+2=0\)
\(\Leftrightarrow x=-2\)
Vậy x=-2
Bài 3 :
Ta có : \(A=x^2+x+2012\)
=> \(A=x^2+x+\left(\frac{1}{2}\right)^2+\frac{8047}{4}\)
=> \(A=\left(x+\frac{1}{2}\right)^2+\frac{8047}{4}\)
- Ta thấy : \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
=> \(\left(x+\frac{1}{2}\right)^2+\frac{8047}{4}\ge\frac{8047}{4}\forall x\)
- Dấu "=" xảy ra <=> \(x+\frac{1}{2}=0\)
<=> \(x=-\frac{1}{2}\)
Vậy MinA = \(\frac{8047}{4}\) <=> x = \(-\frac{1}{2}\) .
Bài 1 :
a, Ta có : \(\left(3x-2\right)\left(4+5x\right)=0\)
=> \(\left[{}\begin{matrix}3x-2=0\\4+5x=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}3x=2\\5x=-4\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\frac{2}{3}\\x=-\frac{4}{5}\end{matrix}\right.\)
Vậy phương trình có nghiệm là x = \(\frac{2}{3}\), x = \(-\frac{4}{5}\) .
b,- ĐKXĐ : \(\left\{{}\begin{matrix}x-1\ne0\\x+1\ne0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\)
=> \(x\ne\pm1\)
Ta có : \(\frac{x+1}{x-1}-\frac{4}{x+1}=\frac{3-x^2}{1-x^2}\)
=> \(\frac{\left(x+1\right)^2}{x^2-1}-\frac{4\left(x-1\right)}{x^2-1}=\frac{x^2-3}{x^2-1}\)
=> \(\left(x+1\right)^2-4\left(x-1\right)=x^2-3\)
=> \(x^2+2x+1-4x+4=x^2-3\)
=> \(-2x=-3-5\)
=> \(x=4\left(TM\right)\)
Vậy phương trình có nghiệm là x = 4 .
c, Ta có : \(\frac{10x+3}{2009}+\frac{10x-1}{2013}=\frac{10x+1}{2011}-\frac{2-10x}{2014}\)
=> \(\frac{10x+3}{2009}+\frac{10x-1}{2013}=\frac{10x+1}{2011}+\frac{10x-2}{2014}\)
=> \(\frac{10x+3}{2009}+1+\frac{10x-1}{2013}+1=\frac{10x+1}{2011}+1+\frac{10x-2}{2014}+1\)
=> \(\frac{10x+3}{2009}+\frac{2009}{2009}+\frac{10x-1}{2013}+\frac{2013}{2013}=\frac{10x+1}{2011}+\frac{2011}{2011}+\frac{10x-2}{2014}+\frac{2014}{2014}\)
=> \(\frac{10x+2012}{2009}+\frac{10x+2012}{2013}=\frac{10x+2012}{2011}+\frac{10x+2012}{2014}\)
=> \(\frac{10x+2012}{2009}+\frac{10x+2012}{2013}-\frac{10x+2012}{2011}-\frac{10x+2012}{2014}=0\)
=> \(\left(10x+2012\right)\left(\frac{1}{2009}+\frac{1}{2013}-\frac{1}{2011}-\frac{1}{2014}\right)=0\)
=> \(10x+2012=0\)
=> \(x=-\frac{2012}{10}\)
Vậy phương trình có nghiệm là x = \(-\frac{2012}{10}\) .
Bài 3:
Giải:
Ta có : A = x2 + x + 2012
= x2 + 2.\(\frac{1}{2}\).x + \(\frac{1}{4}\) + \(\frac{8047}{4}\)
= (x + \(\frac{1}{2}\))2 + \(\frac{8047}{4}\) ≥ \(\frac{8047}{4}\)
⇒ Amin = \(\frac{8047}{4}\) ⇔ (x + \(\frac{1}{2}\))2 = 0 ⇔ x = \(-\frac{1}{2}\)
Vậy Amin = \(\frac{8047}{4}\) tại x = \(-\frac{1}{2}\)
Chúc bạn học tốt@@
a, <=> 5x= 15 <=> x=5
b, <=> x(4x+5)=0 <=> \(\left[{}\begin{matrix}x=0\\x=-\frac{5}{4}\end{matrix}\right.\)
c, <=> \(x^2-4x+4=1-5x< =>x^2+x+3=0< =>\)vô nghiệm
d, <=>(x+2)(x+3)=0<=> \(\left[{}\begin{matrix}x=-2\\x=-3\end{matrix}\right.\)
e, Đặt x^2=a(đk a>=0)
Pt<=>\(a^2-5a+4=0< =>\left(a-4\right)\left(a-1\right)=0< =>\left[{}\begin{matrix}a=4\left(TM\right)< =>x=2\\a=1\left(TM\right)< =>x=1\end{matrix}\right.\)
f, <=>\(5x^2-15x=16x^2+16x+4+1< =>11x^2+31x+5=0< =>\left[{}\begin{matrix}x=\frac{-31+\sqrt{741}}{22}\\x=\frac{-31-\sqrt{741}}{22}\end{matrix}\right.\)
Bài 1:
a) Ta có: \(2,3x-2\left(0,7+2x\right)=3,6-1,7x\)
\(\Leftrightarrow2,3x-1,4-4x-3,6+1,7x=0\)
\(\Leftrightarrow-5=0\)(vl)
Vậy: \(x\in\varnothing\)
b) Ta có: \(\frac{4}{3}x-\frac{5}{6}=\frac{1}{2}\)
\(\Leftrightarrow\frac{4}{3}x=\frac{1}{2}+\frac{5}{6}=\frac{8}{6}=\frac{4}{3}\)
hay x=1
Vậy: x=1
c) Ta có: \(\frac{x}{10}-\left(\frac{x}{30}+\frac{2x}{45}\right)=\frac{4}{5}\)
\(\Leftrightarrow\frac{9x}{90}-\frac{3x}{90}-\frac{4x}{90}-\frac{72}{90}=0\)
\(\Leftrightarrow2x-72=0\)
\(\Leftrightarrow2\left(x-36\right)=0\)
mà 2>0
nên x-36=0
hay x=36
Vậy: x=36
d) Ta có: \(\frac{10x+3}{8}=\frac{7-8x}{12}\)
\(\Leftrightarrow12\left(10x+3\right)=8\left(7-8x\right)\)
\(\Leftrightarrow120x+36=56-64x\)
\(\Leftrightarrow120x+36-56+64x=0\)
\(\Leftrightarrow184x-20=0\)
\(\Leftrightarrow184x=20\)
hay \(x=\frac{5}{46}\)
Vậy: \(x=\frac{5}{46}\)
e) Ta có: \(\frac{10x-5}{18}+\frac{x+3}{12}=\frac{7x+3}{6}-\frac{12-x}{9}\)
\(\Leftrightarrow\frac{2\left(10x-5\right)}{36}+\frac{3\left(x+3\right)}{36}-\frac{6\left(7x+3\right)}{36}+\frac{4\left(12-x\right)}{36}=0\)
\(\Leftrightarrow2\left(10x-5\right)+3\left(x+3\right)-6\left(7x+3\right)+4\left(12-x\right)=0\)
\(\Leftrightarrow20x-10+3x+9-42x-18+48-4x=0\)
\(\Leftrightarrow-23x+29=0\)
\(\Leftrightarrow-23x=-29\)
hay \(x=\frac{29}{23}\)
Vậy: \(x=\frac{29}{23}\)
f) Ta có: \(\frac{x+4}{5}-x-5=\frac{x+3}{2}-\frac{x-2}{2}\)
\(\Leftrightarrow\frac{2\left(x+4\right)}{10}-\frac{10x}{10}-\frac{50}{10}=\frac{25}{10}\)
\(\Leftrightarrow2x+8-10x-50-25=0\)
\(\Leftrightarrow-8x-67=0\)
\(\Leftrightarrow-8x=67\)
hay \(x=\frac{-67}{8}\)
Vậy: \(x=\frac{-67}{8}\)
g) Ta có: \(\frac{2-x}{4}=\frac{2\left(x+1\right)}{5}-\frac{3\left(2x-5\right)}{10}\)
\(\Leftrightarrow5\left(2-x\right)-8\left(x+1\right)+6\left(2x-5\right)=0\)
\(\Leftrightarrow10-5x-8x-8+12x-30=0\)
\(\Leftrightarrow-x-28=0\)
\(\Leftrightarrow-x=28\)
hay x=-28
Vậy: x=-28
h) Ta có: \(\frac{x+2}{3}+\frac{3\left(2x-1\right)}{4}-\frac{5x-3}{6}=x+\frac{5}{12}\)
\(\Leftrightarrow\frac{4\left(x+2\right)}{12}+\frac{9\left(2x-1\right)}{12}-\frac{2\left(5x-3\right)}{12}-\frac{12x}{12}-\frac{5}{12}=0\)
\(\Leftrightarrow4x+8+18x-9-10x+6-12x-5=0\)
\(\Leftrightarrow0x=0\)
Vậy: \(x\in R\)
Bài 2:
a) Ta có: \(5\left(x-1\right)\left(2x-1\right)=3\left(x+8\right)\left(x-1\right)\)
\(\Leftrightarrow5\left(x-1\right)\left(2x-1\right)-3\left(x-1\right)\left(x+8\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[5\left(2x-1\right)-3\left(x+8\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(10x-5-3x-24\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(7x-29\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\7x-29=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\7x=29\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{29}{7}\end{matrix}\right.\)
Vậy: Tập nghiệm \(S=\left\{1;\frac{29}{7}\right\}\)
b) Ta có: \(\left(3x-2\right)\left(x+6\right)\left(x^2+5\right)=0\)(1)
Ta có: \(x^2\ge0\forall x\)
\(\Rightarrow x^2+5\ge5\ne0\forall x\)(2)
Từ (1) và (2) suy ra:
\(\left[{}\begin{matrix}3x-2=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=2\\x=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{2}{3}\\x=-6\end{matrix}\right.\)
Vậy: Tập nghiệm \(S=\left\{\frac{2}{3};-6\right\}\)
c) Ta có: \(\left(3x-2\right)\left(9x^2+6x+4\right)-\left(3x-1\right)\left(9x^2-3x+1\right)=x-4\)
\(\Leftrightarrow27x^3-8-\left(27x^3-1\right)-x+4=0\)
\(\Leftrightarrow27x^3-8-27x^3+1-x+4=0\)
\(\Leftrightarrow-x-3=0\)
\(\Leftrightarrow-x=3\)
hay x=-3
Vậy: Tập nghiệm S={-3}
d) Ta có: \(x\left(x-1\right)-\left(x-3\right)\left(x+4\right)=5x\)
\(\Leftrightarrow x^2-x-\left(x^2+x-12\right)-5x=0\)
\(\Leftrightarrow x^2-x-x^2-x+12-5x=0\)
\(\Leftrightarrow12-7x=0\)
\(\Leftrightarrow7x=12\)
hay \(x=\frac{12}{7}\)
Vậy: Tập nghiệm \(S=\left\{\frac{12}{7}\right\}\)
e) Ta có: (2x+1)(2x-1)=4x(x-7)-3x
\(\Leftrightarrow4x^2-1-4x^2+28x+3x=0\)
\(\Leftrightarrow31x-1=0\)
\(\Leftrightarrow31x=1\)
hay \(x=\frac{1}{31}\)
Vậy: Tập nghiệm \(S=\left\{\frac{1}{31}\right\}\)
Bài làm
~ Bạn Thủy bên dưới có vẻ bị Lag mạnh, bài dễ như này mà cũng dùng denta với đen tiếc. Đéo biết làm thì đừng làm chứ đéo phải làm cái kiểu mà lớp 8 chưa học nhé bạn >.<, câu c dòng thứ hai với dòng thứ 3 không phải là thừa sao? đã vậy câu c làm sai đề nữa, bên trên là 1 - 5x. bên dưới là 1 + 5x . câu cuối cũng sai hằng đẳng thức, phải là +16x chứ hông phỉa -16x.~
a) 2x + 5 = 20 - 3x
<=> 2x + 3x = 20 + 5
<=> 5x = 25
<=> x = 5
Vậy x = 5 là nghiệm phương trình.
b) 4x2 + 5x = 0
<=> x( 4x + 5 ) = 0
<=> \(\orbr{\begin{cases}x=0\\4x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{5}{4}\end{cases}}}\)
Vậy S = { 0; -5/4 }
c) \(\left(x-2\right)^2=1-5x\)
<=> \(x^2-4x+4=1-5x\)
<=> x2 - 4x + 5x - 1 + 4 = 0
<=> x2 + x + 3 = 0
<=> \(x^2+x.2.\frac{1}{2}+\frac{1}{4}+\frac{11}{4}=0\)
<=> \(\left(x^2+x+\frac{1}{4}\right)=-\frac{11}{4}\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2=-\frac{11}{4}\)( vô lí )
Vậy phương trình vô nghiệm.
d) x2 + 5x + 6 = 0
<=> x2 + 2x + 3x + 6 = 0
<=> x( x + 2 ) + 3( x + 2 ) = 0
<=> ( x + 3 )( x + 2 ) = 0
<=> \(\orbr{\begin{cases}x+3=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=-2\end{cases}}}\)
Vậy tập nghiệm phương trình S = { -3; -2 }
e) x4 - 5x2 + 4 = 0
<=> x4 - x2 - 4x2 + 4 = 0
<=> x2( x2 - 1 ) - 4( x2 - 1 ) = 0
<=> ( x2 - 1 )( x2 - 4 ) = 0
<=> ( x - 1 )( x + 1 )( x - 2 )( x + 2 ) = 0
<=> \(\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}}\)
\(\orbr{\begin{cases}x-2=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}}\)
Vậy tập nghiệm phương trình S = { 1; -1; 2; -2 }
f) 5( x2 - 3x ) = ( 4x + 2 )2 + 1
<=> 5x2 - 15x = 16x2 + 16x + 4 + 1
<=> 5x2 - 16x2 - 15x - 16x - 4 - 1 = 0
<=> -11x2 - 31x - 5 = 0
<=> -( 11x2 + 31x + 5 ) = 0
Ta có:( 11x2 + 31x + 5 ) > 0 V x
=> -( 11x2 + 31x + 5 ) < 0 V x
=> -( 11x2 + 31x + 5 ) = 0 ( vô lí )
Vậy phương trình vô nghiệm.
a, \(2x+5=20-3x\)
\(2x+5-20+3x=0\)
\(5x-15=0\Leftrightarrow5x=15\Leftrightarrow x=3\)
b, \(4x^2+5x=0\)
\(x\left(4x+5\right)=0\)
\(x=0\)
\(4x+5=0\Leftrightarrow4x=-5\Leftrightarrow x=-\frac{5}{4}\)
c, \(\left(x-2\right)^2=1-5x\)
\(\left(x-2\right)=\pm\sqrt{1-5x}\)
\(x-2=\sqrt{1+5x}\)
\(x^2-4x+4=1+5x\)
\(x^2-4x+4-1-5x=0\)
\(x^2-9x+3=0\)
\(\Delta=b^2-4ac=\left(-9\right)^2-4.3.1=81-12=69>0\)
Nên pt có 2 nghiệm phân biệt
\(x_1=\frac{9-\sqrt{69}}{2.1}=\frac{9-\sqrt{69}}{2}\)
\(x_2=\frac{9+\sqrt{69}}{2.1}=\frac{9+\sqrt{69}}{2}\)
a, (x-5).(x-1) >0
<=> x-5>0 và x-1>0
<=> x-5>0
<=> x>5
x-1>0
<=> x>1
Vậy x>5
b, (2x-3).(x+1) <0
<=> 2x-3<0 và x+1<0
2x-3<0 <=> 2x<3 <=> x<2/3
x+1<0 <=> x<-1
Vậy x<2/3
c, 2x2 - 3x +1>0
<=> 2x2 - 2x- x +1>0
<=>(x-1). (2x-1) >0
<=> x-1>0 và 2x-1>0
x-1>0 <=> x>1
2x-1>0 <=> 2x>1 <=> x>1/2
Vậy x>1/2
a) Ta có: \(-5x^2+3x=0\)
\(\Leftrightarrow x\left(-5x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\-5x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\-5x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{3}{5}\end{matrix}\right.\)
Vậy: \(x\in\left\{0;\frac{3}{5}\right\}\)
b) Ta có: \(1+\frac{x-1}{3}=\frac{2x+1}{6}-2\)
\(\Leftrightarrow1+\frac{x-1}{3}-\frac{2x+1}{6}+2=0\)
\(\Leftrightarrow3+\frac{x-1}{3}-\frac{2x+1}{6}=0\)
\(\Leftrightarrow\frac{18}{6}+\frac{2\left(x-1\right)}{6}-\frac{2x+1}{6}=0\)
\(\Leftrightarrow18+2x-2-2x-2=0\)
\(\Leftrightarrow14=0\)(vô lý)
Vậy: x∈∅
c) Ta có: 2-x=3(x+1)
⇔2-x=3x+3
⇔2-x-3x-3=0
⇔-4x-1=0
⇔-4x=1
hay \(x=\frac{-1}{4}\)
Vậy: \(x=\frac{-1}{4}\)
d) Ta có: 4x+7(x-2)=-9x+5
⇔4x+7x-14+9x-5=0
⇔20x-19=0
⇔20x=19
hay \(x=\frac{19}{20}\)
Vậy: \(x=\frac{19}{20}\)
e) Ta có: -4(x+3)=5(2x-9)
⇔-4x-12=10x-45
⇔-4x-12-10x+45=0
⇔-14x+33=0
⇔-14x=-33
hay \(x=\frac{33}{14}\)
Vậy: \(x=\frac{33}{14}\)
f) Ta có: \(\frac{2x-1}{3}-\frac{5x+2}{4}=2x\)
\(\Leftrightarrow\frac{4\left(2x-1\right)}{12}-\frac{3\left(5x+2\right)}{12}=\frac{24x}{12}\)
\(\Leftrightarrow4\left(2x-1\right)-3\left(5x+2\right)-24x=0\)
\(\Leftrightarrow8x-4-15x-6-24x=0\)
\(\Leftrightarrow-31x-10=0\)
\(\Leftrightarrow-31x=10\)
hay \(x=\frac{-10}{31}\)
Vậy: \(x=\frac{-10}{31}\)
\(a.\left(4x-3\right)^2-\left(2x+1\right)^2=0\\\Leftrightarrow \left(4x-3-2x-1\right)\left(4x-3+2x+1\right)=0\\\Leftrightarrow \left(2x-4\right)\left(6x-2\right)=0\\ \Rightarrow\left[{}\begin{matrix}2x-4=0\\6x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{2;\frac{1}{3}\right\}\)
\(b.\left(3x-1\right)\left(2x-5\right)=\left(3x-1\right)\left(x+2\right)\\ \Leftrightarrow\left(3x-1\right)\left(2x-5\right)-\left(3x-1\right)\left(x+2\right)=0\\ \Leftrightarrow\left(3x-1\right)\left(2x-5-x-2\right)=0\\ \Leftrightarrow\left(3x-1\right)\left(x-7\right)=0\\ \Rightarrow\left[{}\begin{matrix}3x-1=0\\x-7=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{1}{3}\\x=7\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{7;\frac{1}{3}\right\}\)
\(c.\left(x+6\right)\left(x-1\right)=2\left(x-1\right)\\ \Leftrightarrow\left(x+6\right)\left(x-1\right)-2\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x+4\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-1=0\\x+4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{1;-4\right\}\)
\(d.\left(x-1\right)^2=4\\ \Leftrightarrow\left(x-1\right)^2-4=0\\\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{3;-1\right\}\)
\(e.3x-12=5x\left(x-4\right)\\ \Leftrightarrow3\left(x-4\right)=5x\left(x-4\right)\\ \Leftrightarrow3\left(x-4\right)-5x\left(x-4\right)=0\\ \Leftrightarrow\left(3-5x\right)\left(x-4\right)=0\\ \Rightarrow\left[{}\begin{matrix}3-5x=0\\x-4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{3}{5}\\x=4\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{4;\frac{3}{5}\right\}\)
\(f.x^2-1=0\\ \Leftrightarrow\left(x-1\right)\left(x+1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{1;-1\right\}\)