Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(4m-1\right)\left(n-4\right)-\left(m-4\right)\left(4n-1\right)\)= 4mn-16m-n+4-4mn+m+16n=15n-15m=15(n-m)
Thấy 15 chia hết cho 5 => 15(m+n) chia hết cho 5 với mọi x
A = ( 4m - 1 )( n - 4 ) - ( m - 4 )( 4n - 1 )
= 4mn-16m-n+4-4mn+m+16n-4
= -15m+15n
= 15(-m+n) chia het cho 15 ........
ok
1,n ( 2n - 3 ) - 2n (n + 1)
= 2n^2 - 3n - 2n^2 - 2n
= -5n chia hết cho 5 với mọi n
=> ĐPCM
2,( n- 1)(n + 4) - ( n - 4 )( n + 1)
= n^2 - n + 4n - 4 - ( n^2 - 4n + n - 4 )
= n^2 + 3n - 4 - n^2 + 3n + 4
= 6n chia hết cho 6 với mọi n thuộc Z
=> ĐPCM
A=(4m-1)(n-4)-(m-4)(4n-1)
=4mn-16m-n+4-(4mn-m-16n+4)
=4mn-16m-n+4-4mn+m+16n-4
=5mn-4mn-16m+m-n+16n+4-4
=-15m+15n
\(\Rightarrow\)A chia hết cho 15 (đpcm)
Lời giải:
a) $x+3=(x+3)^2$
$\Leftrightarrow (x+3)^2-(x+3)=0$
$\Leftrightarrow (x+3)(x+3-1)=0$
$\Leftrightarrow (x+3)(x+2)=0$
$\Rightarrow x+3=0$ hoặc $x+2=0$
$\Rightarrow x=-3$ hoặc $x=-2$
b)
$n^2-4n-15\vdots n+2$
$\Leftrightarrow n(n+2)-6(n+2)-3\vdots n+2$
$\Leftrightarrow 3\vdots n+2$
$\Rightarrow n+2\in\left\{\pm 1;\pm 3\right\}$
$\Rightarrow n\in\left\{-3; -1; 1; -5\right\}$
a, Ta có : \(x+3=\left(x+3\right)^2\)
=> \(\left(x+3\right)-\left(x+3\right)^2=0\)
=> \(\left(x+3\right)\left(1-\left(x+3\right)\right)=0\)
=> \(\left[{}\begin{matrix}x+3=0\\1-\left(x+3\right)=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là \(S=\left\{-2,-3\right\}\)
b, Ta có : \(n^2-4n-15⋮n+2\)
=> \(n^2+4n-8n+4-16-3⋮n+2\)
=> \(\left(n^2+4n+4\right)-\left(8n+16\right)-3⋮n+2\)
=> \(\left(n+2\right)^2-8\left(n+2\right)-3⋮n+2\)
=> \(\left(n+2\right)\left(n-6\right)-3⋮n+2\)
Mà \(\left(n+2\right)\left(n-6\right)⋮n+2\)
=> \(-3⋮n+2\)
=> \(n+2\inƯ_{\left(-3\right)}\)
Mà \(n\in Z\)
=> \(n+2\in\left\{1,-1,3,-3\right\}\)
=> \(n\in\left\{-1,-3,1,-5\right\}\)
Vậy \(n\in\left\{-1,-3,1,-5\right\}\) để n2- 4n - 15 chia hết cho n + 2
( 4m - 1 ) nha