K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2022

a, (43 x 27 - 4x 23) - (4 x 52 - 32 : 24)

=  (43 x 27 - 4x 8) - (4 x 25 - 32 : 16)

=  43 x (27 - 8) - (100 - 2)

=  64 x 19 - 98

=  1216 - 98

=  1118 

24 tháng 8 2022

(43.27-43.23)-(4.52-32:24)

= (43.27-43.8)-(208-2)

= 43.(27-8) - 206

= 64x19 - 206

=1216 - 206 = 1010

AH
Akai Haruma
Giáo viên
15 tháng 3 2019

Lời giải:
1.

\((-2x^4y^3z^7)^2(\frac{1}{4}xy^5)(-3x^2yz)^3(\frac{-1}{27}x^3yz^2)\)

\(=(4x^8y^6z^{14})(\frac{1}{4}xy^5)(-27x^6y^3z^3)(-\frac{1}{27}x^3yz^2)\)

\(=(4.\frac{1}{4}.-27.\frac{-1}{27})(x^8.x.x^6.x^3)(y^6.y^5.y^3.y)(z^{14}.z^3.z^2)\)

\(=x^{18}.y^{15}.z^{19}\)

2.

\(=(\frac{-1}{3}.\frac{4}{5}.\frac{-27}{10})(x.x^5.x^2)(y^2.y^6.y)(z.z.z^4)\)

\(=\frac{18}{25}.x^8.y^9.z^6\)

3.

\(=(49.x^{10}y^2z^4)(\frac{-1}{4}.x^3yz^7)(\frac{8}{21}x^5z^4)\)

\(=(49.\frac{-1}{4}.\frac{8}{21})(x^{10}.x^3.x^5)(y^2.y)(z^4.z^7.z^4)\)

\(=\frac{-14}{3}.x^{18}.y^3.z^{15}\)

4.

\(=(\frac{-1}{64}.x^8.y^9.z^{12})(4x^2y^2z^4)(\frac{-5}{3}x^4yz)\)

\(=(\frac{-1}{64}.4.\frac{-5}{3})(x^8.x^2.x^4)(y^9.y^2.y)(z^{12}.z^4.z)\)

\(=\frac{5}{48}.x^{14}.y^{12}.z^{17}\)

5.

\(=(\frac{1}{16}.x^8.y^4z^2)(-8xyz^2).(-\frac{1}{2}x^4yz)\)

\(=(\frac{1}{16}.-8.\frac{-1}{2})(x^8.x.x^4)(y^4.y.y)(z^2.z^2.z)\)

\(=\frac{1}{4}.x^{13}.y^6.z^5\)

17 tháng 9 2019

1) \(5^x+5^{x+2}=650\)

\(\Rightarrow5^x.1+5^x.5^2=650\)

\(\Rightarrow5^x.\left(1+5^2\right)=650\)

\(\Rightarrow5^x.26=650\)

\(\Rightarrow5^x=650:26\)

\(\Rightarrow5^x=25\)

\(\Rightarrow5^x=5^2\)

\(\Rightarrow x=2\)

Vậy \(x=2.\)

Mình chỉ làm câu 1) thôi nhé.

Chúc bạn học tốt!

3 tháng 8 2017

a) \(\left(x-2\right)^3=-27\)

\(\Rightarrow\left(x-2\right)^3=\left(-3\right)^3\)

\(\Rightarrow x-2=-3\)

\(\Rightarrow x=-1\)

Vậy \(x=-1\)

b) \(\left(2x+1\right)^4=81\)

\(\Rightarrow\left(2x+1\right)^4=3^4=\left(-3\right)^4\)

\(\left\{{}\begin{matrix}\left(2x+1\right)^4=3^4\Rightarrow2x+1=3\Rightarrow x=1\\\left(2x+1\right)^4=\left(-3\right)^4\Rightarrow2x+1=-3\Rightarrow x=-2\end{matrix}\right.\)

Vậy \(x=1;x=-2\)

c) Bạn xem lại đề bài nhé!

d) \(\left(5x-2\right)^{10}=\left(5x-2\right)^{100}\)

\(\Rightarrow\left(5x-2\right)^{10}-\left(5x-2\right)^{100}=0\)

\(\Rightarrow\left(5x-2\right)^{10}.\left[1-\left(5x-2\right)^{90}\right]=0\)

+) TH1: \(\left(5x-2\right)^{10}=0\)

\(\Rightarrow5x-2=0\)

\(\Rightarrow x=\dfrac{2}{5}\)

+) TH2: \(1-\left(5x-2\right)^{90}=0\)

\(\Rightarrow\left(5x-2\right)^{90}=1\)

\(\Rightarrow\left(5x-2\right)^{90}=1^{90}=\left(-1\right)^{90}\)

\(\Rightarrow\left\{{}\begin{matrix}\left(5x-2\right)^{90}=1^{90}\Rightarrow5x-2=1\Rightarrow x=\dfrac{3}{5}\\\left(5x-2\right)^{90}=\left(-1\right)^{90}\Rightarrow5x-2=-1\Rightarrow x=\dfrac{1}{5}\end{matrix}\right.\)

Vậy \(x\in\left\{\dfrac{1}{5};\dfrac{2}{5};\dfrac{3}{5}\right\}\)

3 tháng 8 2017

đúng rồi có sai đâu với trả lời giúp mình bài hình với

15 tháng 7 2016

Bạn hãy đăng từng bài để tiện trao đổi. Yên tâm mình sẽ giúp bạn.

15 tháng 7 2016

B1: \(2^{300}=\left(2^3\right)^{100}=8^{100}\) 

\(3^{200}=\left(3^2\right)^{100}=9^{100}\) 

\(8^{100}< 9^{100}\Rightarrow2^{300}< 3^{200}\)

AH
Akai Haruma
Giáo viên
7 tháng 8 2019

a)

\((3x-7)^5=0\Rightarrow 3x-7=0\Rightarrow x=\frac{7}{3}\)

b)

\(\frac{1}{4}-(2x-1)^2=0\)

\(\Leftrightarrow (2x-1)^2=\frac{1}{4}=(\frac{1}{2})^2=(-\frac{1}{2})^2\)

\(\Rightarrow \left[\begin{matrix} 2x-1=\frac{1}{2}\\ 2x-1=\frac{-1}{2}\end{matrix}\right.\Rightarrow \Rightarrow \left[\begin{matrix} x=\frac{3}{4}\\ x=\frac{1}{4}\end{matrix}\right.\)

c)

\(\frac{1}{16}-(5-x)^3=\frac{31}{64}\)

\(\Leftrightarrow (5-x)^3=\frac{1}{16}-\frac{31}{64}=\frac{-27}{64}=(\frac{-3}{4})^3\)

\(\Leftrightarrow 5-x=\frac{-3}{4}\)

\(\Leftrightarrow x=\frac{23}{4}\)

d)

\(2x=(3,8)^3:(-3,8)^2=(3,8)^3:(3,8)^2=3,8\)

\(\Rightarrow x=3,8:2=1,9\)

AH
Akai Haruma
Giáo viên
7 tháng 8 2019

e)

\((\frac{27}{64})^9.x=(\frac{-3}{4})^{32}\)

\(\Leftrightarrow [(\frac{3}{4})^3]^9.x=(\frac{3}{4})^{32}\)

\(\Leftrightarrow (\frac{3}{4})^{27}.x=(\frac{3}{4})^{32}\)

\(\Leftrightarrow x=(\frac{3}{4})^{32}:(\frac{3}{4})^{27}=(\frac{3}{4})^5\)

f)

\(5^{(x+5)(x^2-4)}=1\)

\(\Leftrightarrow (x+5)(x^2-4)=0\)

\(\Leftrightarrow \left[\begin{matrix} x+5=0\\ x^2-4=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x+5=0\\ x^2=4=2^2=(-2)^2\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} x=-5\\ x=\pm 2\end{matrix}\right.\)

g)

\((x-2,5)^2=\frac{4}{9}=(\frac{2}{3})^2=(\frac{-2}{3})^2\)

\(\Rightarrow \left[\begin{matrix} x-2,5=\frac{2}{3}\\ x-2,5=\frac{-2}{3}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{19}{6}\\ x=\frac{11}{6}\end{matrix}\right.\)

h)

\((2x+\frac{1}{3})^3=\frac{8}{27}=(\frac{2}{3})^3\)

\(\Rightarrow 2x+\frac{1}{3}=\frac{2}{3}\Rightarrow x=\frac{1}{6}\)

AH
Akai Haruma
Giáo viên
19 tháng 3 2019

1.

\(-3x^5y^4+3x^2y^3-7x^2y^3+5x^5y^4\)

\(=(-3x^5y^4+5x^5y^4)+(3x^2y^3-7x^2y^3)\)

\(=2x^5y^4-4x^2y^3\)

2.

\(\frac{1}{2}x^4y-\frac{3}{2}x^3y^4+\frac{5}{3}x^4y-x^3y^4\)

\(=(\frac{1}{2}x^4y+\frac{5}{3}x^4y)-(\frac{3}{2}x^3y^4+x^3y^4)\)

\(=\frac{13}{6}x^4y-\frac{5}{2}x^3y^4\)

3.

\(5x-7xy^2+3x-\frac{1}{2}xy^2\)

\(=(5x+3x)-(7xy^2+\frac{1}{2}xy^2)\)

\(=8x-\frac{15}{2}xy^2\)

AH
Akai Haruma
Giáo viên
19 tháng 3 2019

4.

\(\frac{-1}{5}x^4y^3+\frac{3}{4}x^2y-\frac{1}{2}x^2y+x^4y^3\)

\(=(\frac{-1}{5}x^4y^3+x^4y^3)+(\frac{3}{4}x^2y-\frac{1}{2}x^2y)\)

\(=\frac{4}{5}x^4y^3+\frac{1}{4}x^2y\)

5.

\(\frac{7}{4}x^5y^7-\frac{3}{2}x^2y^6+\frac{1}{5}x^5y^7+\frac{2}{3}x^2y^6\)

\(=(\frac{7}{4}x^5y^7+\frac{1}{5}x^5y^7)+(-\frac{3}{2}x^2y^6+\frac{2}{3}x^2y^6)\)

\(=\frac{39}{20}x^5y^7-\frac{5}{6}x^2y^6\)

6.

\(\frac{1}{3}x^2y^5(-\frac{3}{5}x^3y)+x^5y^6=(\frac{1}{3}.\frac{-3}{5})(x^2.x^3)(y^5.y)+x^5y^6\)

\(=\frac{-1}{5}x^5y^6+x^5y^6=\frac{4}{5}x^5y^6\)

a: (x-3)2=49

=>x-3=7 hoặc x-3=-7

=>x=10 hoặc x=-4

b: \(\left(x^4\right)^2=\dfrac{x^{12}}{x^5}\)

\(\Leftrightarrow x^8-x^7=0\)

\(\Leftrightarrow x^7\left(x-1\right)=0\)

=>x=0 hoặc x=1

c: \(\Leftrightarrow x^{10}-25x^8=0\)

\(\Leftrightarrow x^8\left(x^2-25\right)=0\)

\(\Leftrightarrow x^8\left(x-5\right)\left(x+5\right)=0\)

hay \(x\in\left\{0;5;-5\right\}\)