Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : A = 2 + 2^2 + 2^3 + ... + 2^50
A = (2 + 2^2) + (2^3 + 2^4) + ... + (2^49 + 2^50)
A = 2. ( 1+2) + 2^3. (1 + 2) + ... + 2^49. (1 + 2)
A = 2 . 3 + 2^3 . 3 + .... + 2^49 . 3
A = 3. (2 + 2^3 + .... + 2^49) chia hết cho 3.
mình không viết lại đề
= (4+4^2) + (4^3+4^4) + ... + (4^47+4^48) + (4^49+4^50)
= 4(1+4) + 4^3(1+4) + ... + 4^47(1+4) + 4^49(1+4)
= 4.5 + 4^3.5 + ... + 4^47.5 + 4^49.5
=5(4+4^3+...+4^47+4^49)
mà 5(4+4^3+...+4^47+4^49) chia hết cho 5
=> A chia hết cho 5
A=4+4^2+4^3+4^4+...+4^49+4^50
A=(4+4^2)+(4^3+4^4)+...+(4^49+4^50)
A=4.(1+4)+4^3.(1+4)+...+4^49.(1+4)
A=4.5+4^3.5+...+4^49.5
A=5.(4+4^3+...+4^49) chia het cho 5(vi 5 chia het cho 5)
=> A chia het cho 5
\(A=4+4^2+4^3+4^4+...+4^{49}+4^{50}\)
\(A=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{49}+4^{50}\right)\)
\(A=4.5+4^3.5+...+4^{49}.5\)
\(A=5.\left(4+4^3+...+4^{49}\right)CHIA-HETCHO5\)
\(A=4+4^2+4^3+...+4^{50}\)
\(A=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{49}+4^{50}\right)\)
\(A=4.\left(1+4\right)+4^3.\left(1+4\right)+...+4^{49}.\left(1+4\right)\)
\(A=4.5+4^3.5+...+4^{49}.5\)
\(A=5.\left(4+4^3+...+4^{49}\right)\)
\(\Rightarrow A⋮5\)
\(A=4+4^2+4^3+4^4+4^5+4^6+...+4^{48}+4^{49}+4^{50}\)
\(\text{Số số hạng của A là : }50-1+1=50\left(\text{số}\right)\)
\(\text{Chia A làm 25 cặp mỗi cặp 2 số .}\)
\(\text{Ta có : }\left(4+4^2\right)+\left(4^3+4^4\right)+\left(4^5+4^6\right)+...+\left(4^{49}+4^{50}\right)\)
\(\Rightarrow A=4\left(1+4\right)+4^3\left(1+4\right)+4^5\left(1+4\right)+...+4^{49}\left(1+4\right)\)
\(\Rightarrow A=4.5+4^3.5+4^5.5+...+4^{49}.5\)
\(\Rightarrow A=5\left(4+4^3+4^5+...+4^{49}\right)\)
\(\Rightarrow A⋮5\)
A = (4+4^2) + (4^3+4^4) + ... + (4^49 + 4^50)
A= 4.5 + 4^3.5 + ..... +4^49.5
A= 5.(4+4^3+...+4^49)
Vậy A chia hết cho 5
Cách làm rõ ràng được không