Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(78-3\left(x-1\right)=15\)
\(3\left(x-1\right)=78-15\)
\(3\left(x-1\right)=63\)
\(x-1=63:3\)
\(x-1=21\)
\(x=21+1=22\)
b. \(\left(7x-11\right)^3=2^5.5^2+200\)
\(\left(7x-11\right)^3=32.25+200\)
\(\left(7x-11\right)^3=800+200=1000\)
\(\left(7x-11\right)^3=10^3\)
\(\Rightarrow7x-11=10\)
\(7x=10+11\)
\(7x=21\)
\(x=21:7=3\)
c.\(5.\left(3x-13\right)=5^4\)
\(3x-13=5^4:5\)
\(3x-13=5^3=125\)
\(3x=125+13=138\)
\(x=138:3=46\)
d.\(3.\left(5x-13\right)=3^4\)
\(5x-13=3^4:3=3^3\)
\(5x-13=27\)
\(5x=27+13=40\)
\(x=40:5=8\)
a,71.2-6.(2x+5)=10^5:10^3
142-6.(2x+5)=10^2
142-6.(2x+5)=100
6.(2x+5)=142-100
6.(2x+5)=42
2x+5=42:6
2x+5=7
2x=7-5
2x=2
x=1
Vậy x=1
a) 53( 3x + 2 ) : 13 = 103 : ( 135 : 134 )
=> 53( 3x + 2 ) : 13 = 103 : 13
=> 53( 3x + 2 ) = 103 : 13 : 13
=> 53( 3x + 2 ) = 103
=> 3x + 2 = 23
=> 3x + 2 = 8
=> 3x = 6
=> x = 2
a) (x+3).213.(x+3)=217
(x+3)2=217:213
(x+3)2=24
(x+3)2=(22)2
x+3=22
x+3=4
x=1
b) (43+64).(3x+4x+5x)=3072
128.12x=3072
12x=3072:128
12x=24
x=2
c) (x-2)3=(x-2)2
=> x-2 = 0
x=2
hoặc x-2=1
x=3
\(A=2\left(x+3\right)^2-5\)
\(\left(x+3\right)^2\ge0\Rightarrow2\left(x+3\right)^2\ge0\)
\(A_{MIN}\Rightarrow2\left(x+3\right)^2_{MIN}\)
\(2\left(x+3\right)^2_{MIN}=0\)
\(A_{MIN}=0-5=-5\)
\(B=x^4+3x^2+2\)
\(x^4\ge0;x^2\ge0\Rightarrow3x^2\ge0\)
\(B_{MIN}\Rightarrow x^4_{MIN};3x^2_{MIN}\)
\(x^4_{MIN}=0;3x^2_{MIN}=0\)
\(B_{MIM}=0+0+2=2\)
\(C=\left(x^4+5\right)^2\)
\(\left(x^4+5\right)^2\ge0\)
\(C_{MIN}\Rightarrow\left(x^4+5\right)^2_{MIN}\)
\(\left(x^4+5\right)^2_{MIN}=0\)
\(\Rightarrow C_{MIN}=0\)
\(D=\left(x-1\right)^2+\left(y+2\right)^2\)
\(\left(x-1\right)^2\ge0;\left(y+2\right)^2\ge0\)
\(D_{MIN}\Rightarrow\left(x-1\right)^2_{MIN};\left(y+2\right)^2_{MIN}\)
\(\left(x-1\right)^2_{MIN}=0;\left(y+2\right)^2_{MIN}=0\)
\(D_{MIN}=0+0=0\)
a/ Ta có: \(2\left(x+3\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x+3\right)^2-5\ge-5\)
Dấu ''='' xảy ra \(\Leftrightarrow\left(x+3\right)^2=0\Rightarrow x=-3\)
Vậy \(A_{MIN}=-5\Leftrightarrow x=-3\)
b/ Có: \(\left\{{}\begin{matrix}x^4\ge0\\3x^2\ge0\end{matrix}\right.\)\(\forall x\)
\(\Rightarrow x^4+3x^2\ge0\Rightarrow x^4+3x^2+2\ge2\)
Dấu ''='' xảy ra \(\Leftrightarrow x=0\)
Vậy \(B_{MIN}=2\Leftrightarrow x=0\)
c/ Ta có: \(x^4\ge0\forall x\Rightarrow x^4+5\ge5\)
\(\Rightarrow\left(x^4+5\right)^2\ge5^2=25\)
Dấu ''='' xảy ra \(\Leftrightarrow x=0\)
Vậy \(C_{MIN}=25\Leftrightarrow x=0\)
d/ Ta có: \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{matrix}\right.\)\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0\)
Dấu ''='' xảy ra khi \(\left\{{}\begin{matrix}\left(x-1\right)^2=0\Rightarrow x=1\\\left(y+2\right)^2=0\Rightarrow y=-2\end{matrix}\right.\)
Vậy \(D_{MIN}=0\) khi \(\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
a; -2\(x\) - 3.(\(x-17\)) = 34 - 2.( - \(x\) + 25)
- 2\(x\) - 3\(x\) + 51 = 34 + 2\(x\) - 50
2\(x\) + 2\(x\) + 3\(x\) = - 34 + 50 + 51
7\(x\) = 67
\(x\) = 67 : 7
\(x\) = \(\dfrac{67}{7}\)
Vậy \(x\) = \(\dfrac{67}{7}\)
b; 17\(x\) + 3.(- 16\(x\) - 37) = 2\(x\) + 43 - 4\(x\)
17\(x\) - 48\(x\) - 111 = 2\(x\) - 4\(x\) + 43
- 31\(x\) - 2\(x\) + 4\(x\) = 111 + 43
- \(x\) x (31 + 2 - 4) = 154
- \(x\) x (33 - 4) = 154
- \(x\) x 29 = 154
- \(x\) = 154 : (-29)
\(x\) = - \(\dfrac{154}{29}\)
Vậy \(x=-\dfrac{154}{29}\)
a) \(3x-13=2\)
\(\Rightarrow3x=2+13\)
\(\Rightarrow3x=15\)
\(\Rightarrow x=15:3\)
\(\Rightarrow x=5\)
Vậy \(x=5\)
b) \(27-\left(5x+4\right)=13\)
\(\Rightarrow5x+4=27-13\)
\(\Rightarrow5x+4=14\)
\(\Rightarrow5x=14-4\)
\(\Rightarrow5x=10\)
\(\Rightarrow x=10:5\)
\(\Rightarrow x=2\)
Vậy \(x=2\)
c) \(2.5^x-33=2^3+3^2\)
\(\Rightarrow2.5^x-33=8+9\)
\(\Rightarrow2.5^x-33=17\)
\(\Rightarrow2.5^x=17+33\)
\(\Rightarrow2.5^x=50\)
\(\Rightarrow5^x=50:2\)
\(\Rightarrow5^x=25\)
\(\Rightarrow5^x=5^2\)
\(\Rightarrow x=2\)
Vậy \(x=2\)