Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
I don't now
...............
.................
a) ta có: n -6 chia hết cho n - 2
=> n - 2 - 4 chia hết cho n - 2
mà n - 2 chia hết cho n - 2
=> 4 chia hết cho n - 2
=> n - 2 thuộc Ư(4)={1;-1;2;-2;4;-4}
...
rùi bn tự xét giá trị để tìm n nha
câu b;c ;ebn làm tương tự như câu a nha
d) ta có: 3n -1 chia hết cho 11 - 2n
=> 2.(3n-1) chia hết cho 11 - 2n
6n - 2 chia hết cho 11 - 2n
=> -2 + 6n chia hết cho 11 - 2n
=> 31 - 33 + 6n chia hết cho 11 - 2n
=> 31 - 3.(11-2n) chia hết cho 11 - 2n
mà 3.(11-2n) chia hết cho 11 - 2n
=> 31 chia hết cho 11 - 2n
=> 11 - 2n thuộc Ư(31)={1;-1;31;-31)
...
\(n+4⋮n\)
Vì \(n⋮n\)\(\Rightarrow\)Để \(n+4⋮n\)thì \(4⋮n\)
\(\Rightarrow n\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Vậy \(n\in\left\{\pm1;\pm2;\pm4\right\}\)
vì n chia hết cho n
n+4 chia hết cho n
=> 4 chia hết cho n
mà n thuộc N
=> n thuộc: 1;2;4
a) Để \(A=\frac{7}{9}\Leftrightarrow\frac{5n+2}{2n+7}=\frac{7}{9}\)
\(\Leftrightarrow9\left(5n+2\right)=7\left(2n+7\right)\)
\(\Leftrightarrow45n+18=14n+49\)
\(\Leftrightarrow31n=31\)
\(\Leftrightarrow n=1\)
n) Để A nguyên thì \(\frac{5n+2}{2n+7}\in Z\)
Nếu A nguyên thì 2A cũng nguyên. Vậy ta tìm n nguyên để 2A nguyên sau đó thử lại để chọn các giá trị đúng của n.
\(2A=\frac{10n+4}{2n+7}=\frac{5\left(2n+7\right)-31}{2n+7}=5-\frac{31}{2n+7}\)
Để 2A nguyên thì \(2n+7\inƯ\left(31\right)=\left\{\pm1;\pm31\right\}\)
Ta có bảng:
2n + 7 | 1 | -1 | 31 | -31 |
n | -3 | -4 | 12 | -19 |
KL | TM | TM | TM | TM |
Vậy ta có \(n\in\left\{-1;-4;12;-19\right\}\)
c
Lời giải:
$A=\frac{3n+5}{3n-2}=\frac{(3n-2)+7}{3n-2}=1+\frac{7}{3n-2}$
Để $A$ nguyên thì $\frac{7}{3n-2}$ nguyên.
Với $n$ nguyên thì điều này xảy ra khi $7\vdots 3n-2$
$\Rightarrow 3n-2\in\left\{\pm 1; \pm 7\right\}$
$\Rightarrow n\in\left\{1; \frac{1}{3}; 3; \frac{-5}{3}\right\}$
Vì $n$ nguyên nên $n\in\left\{1;3\right\}$
\(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=1+\frac{3}{n-2}\inℤ\Leftrightarrow\frac{3}{n-2}\inℤ\)
mà \(n\inℤ\)nên \(n-2\inƯ\left(3\right)=\left\{-3,-1,1,3\right\}\)
\(\Leftrightarrow n\in\left\{-1,1,3,5\right\}\).
Ta có
\(A=\frac{3n-2}{n-1}=\frac{3\left(n-1\right)+1}{n-1}=3+\frac{1}{n-1}\)
Để A nguyên thì \(\frac{1}{n-1}\)phải nguyên
\(\Rightarrow n-1\in U\left(1\right)=+-1\)
\(TH1:n-1=1\Rightarrow n=2\)
\(TH2:n-1=-1\Rightarrow n=0\)
Vậy \(n\in0;2\)
Để a có giá trị là nguyên thì 3n - 2 chia hết cho n-1 ( các dấu chia trong bài là dấu chia hết )
Ta có : 3n - 2 : n - 1
3 x ( n - 1 ) + 1 : n-1
Mà 3 x ( n - 1 ) : n - 1
Nên : 1 : n -1
=> n - 1 thuộc Ư( 1 )
n - 1 thuộc { 1 , -1 }
nếu n -1 = 1
n = 1 + 1
n = 2
nếu n - 1 = -1
n = - 1 + 1
n = 0
Vậy n = 0 hoặc 2
\(2n+8⋮n+1\)
\(\Rightarrow2\left(n+1\right)+6⋮n+1\)
\(\Rightarrow6⋮n+1\Rightarrow n+1\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
\(\Rightarrow n\in\left\{0;-2;1;-3;2;-4;5;-7\right\}\)
Vậy............................
\(3n-1⋮n-2\)
\(\Rightarrow3\left(n-2\right)+5⋮n+2\)
\(\Rightarrow5⋮n+2\Rightarrow n+2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow n\in\left\{-2;-3;3;-7\right\}\)
Vậy.................................
Để \(A=\frac{3n+8}{n+2}\) nguyên
thì 3n + 8 chia hết cho n + 2
=> 3n + 8 = 3 . ( n + 2 ) + 2 chia hết cho n + 2
mà 3. ( n + 2 ) chia hết cho n + 2
3 . ( n + 2 ) + 2 chia hết cho n + 2 <=> 2 chia hết cho n + 2
Ta có : n + 2 thuốc U ( 2 ) = { 1 ; 2 ; - 1 ; - 2 }
n + 2 = 1 => n = -1
n + 2 = 2 => n = 0
n + 2 = -1 => n = - 3
n + 2 = -2 => n = - 4
Vậy n = { -1 ; 0 ; -3 ; -4 } thỏa mãn đ/k thì A nguyên