Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, =\(3^4+2^5=81+32=113\)
b, =\(3.\left(4^2-2.3\right)=3.\left(16-6\right)=3.10=30\)
c, =\(\dfrac{2^{12}.3^4.3^{10}}{2^{12}.3^{12}}=\dfrac{2^{12}.3^{14}}{2^{12}.3^{12}}=3^2=9\)
d, =\(\dfrac{3^2.7^2.2.7.5^3}{5^3.7^3.2.3}=3\)
e, =\(\dfrac{3^6.5^3.2^8.5^4.2^2.3^4}{2^{10}.3^{10}.5^5}=\dfrac{3^{10}.2^{10}.5^7}{2^{10}.3^{10}.5^5}=5^2=25\)
g, =\(\dfrac{2^5.\left(2^8+1\right)}{2^2.\left(2^8+1\right)}=\dfrac{2^5}{2^2}=2^3=8\)
\(b\)
\(\frac{2^{13+5}}{2^{10+2}}\)=\(\frac{2^{18}}{2^{12}}\)
\(A=3+3^2+...+3^{50}\)
\(\Rightarrow3A=3^2+3^3+...+3^{50}+3^{51}\)
\(\Rightarrow3A-A=3^{51}-3\)
\(\Rightarrow2A=3^{51}-3\)
\(\Rightarrow A=\frac{3^{51}-3}{2}\)
\(B=2-2^2+2^3-2^4+...+2^{2019}-2^{2020}\)
\(2B=2^2-2^3+2^4-2^5+...+2^{2020}-2^{2021}\)
\(B+2B=2-2^{2021}\)
\(3B=2-2^{2021}\)
\(B=\frac{2-2^{2021}}{3}\)
\(C=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2008.2009}\)
\(C=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2008}-\frac{1}{2009}\)
\(C=1-\frac{1}{2009}\)
\(C=\frac{2008}{2009}\)
\(D=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)
\(D=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right)\)
\(D=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)\)
\(D=\frac{1}{2}\left(1-\frac{1}{11}\right)\)
\(D=\frac{1}{2}.\frac{10}{11}=\frac{5}{11}\)
Bài 1:
a) Ta có: \(\frac{-5}{7}+\frac{2}{7}+\frac{4}{-9}+\frac{4}{9}\)
\(=-\frac{3}{7}+\frac{-4}{9}+\frac{4}{9}\)
\(=-\frac{3}{7}\)
b) Ta có: \(\left(\frac{1}{2}:\frac{3}{4}\right)^2\)
\(=\left(\frac{1}{2}\cdot\frac{4}{3}\right)^2\)
\(=\left(\frac{2}{3}\right)^2=\frac{4}{9}\)
c) Ta có: \(\frac{1}{2}+\frac{3}{4}-\left(\frac{4}{5}+\frac{3}{4}\right)\)
\(=\frac{1}{2}+\frac{3}{4}-\frac{4}{5}-\frac{3}{4}\)
\(=\frac{1}{2}-\frac{4}{5}\)
\(=\frac{5}{10}-\frac{8}{10}=\frac{-3}{10}\)
d) Ta có: \(5^6:5^4+2^3\cdot2^2-225:15^2\)
\(=5^2+2^5-\frac{15^2}{15^2}\)
\(=25+32-1\)
\(=56\)
e) Ta có: \(\frac{7}{23}+\frac{4}{17}-\frac{7}{23}+\frac{13}{17}\)
\(=\frac{4}{17}+\frac{13}{17}\)
\(=\frac{17}{17}=1\)
g) Ta có: \(19\frac{1}{4}\cdot\frac{7}{12}-15\frac{1}{4}\cdot\frac{7}{12}\)
\(=\frac{7}{12}\left(19+\frac{1}{4}-15-\frac{1}{4}\right)\)
\(=\frac{7}{12}\cdot4=\frac{7}{3}\)
\(2.THPT\)
\(A=\frac{9}{1.2}+\frac{9}{2.3}+\frac{9}{3.4}+...+\frac{9}{98.99}+\frac{9}{99.100}\)
\(A=9\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)
\(A=9\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=9\left(1-\frac{1}{100}\right)\)
\(A=9.\frac{99}{100}\)
\(A=\frac{891}{100}\)
\(B=\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+...+\frac{2}{93.95}\)
\(B=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{93}-\frac{1}{95}\)
\(B=\frac{1}{5}-\frac{1}{95}\)
\(B=\frac{18}{95}\)
\(D=\frac{5}{2.7}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)
\(D=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{28}\)
\(D=\frac{1}{2}-\frac{1}{28}\)
\(D=\frac{13}{28}\)
a/ 113
b/ 30
c/ 9
d/ 3
e/ 25
g/ 8
a)38:3^4+2^2.2^3=3^8-4+2^2+3=3^4+2^5=81+32=113
b)3.4^2-2.3^2=3(4^2-2.3)=3(16-6)=3.10=30
c)4^6.3^4.9^5/6^12=(2^2)^6.3^4.(3^2)^5/(2.3)^12=2^12.3^4.3^10/2^12.3^12=2^12.3^14/2^12.3^12=3^14/3^12=3^2=9
e)45^3.20^4.18^2/180^5=(5.3^2)^3.(2^2.5)^4.(2.3^2)^2/(2^2.3^2.5)^5=5^3.3^6.2^8.5^4.2^2.3^4/2^10.3^10.5^5=5^9.3^10.2^10/2^10.3^10.5^5
=5^4/1=5^4=625
d)21^2.14.125/35^3.6=(2.7)^2.2.7.5^3/(5.7)^3.2.3=2^2.7^2.2.7.5^3/5^3.7^3.2.3=2^3.7^3.5^3/5^3.7^3.2.3=2^3/2.3=8/6=4/3
g)2^13+2^5/2^10+2^2=2^5(2^8+1)/2^2(2^8+1)=2^5/2^2=32/4=8
Chúc bạn học tốt !!!!