Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{3}-\dfrac{1}{12}-\dfrac{1}{20}-\dfrac{1}{30}-\dfrac{1}{42}-\dfrac{1}{56}-\dfrac{1}{72}-\dfrac{1}{90}-\dfrac{1}{110}=x-\dfrac{5}{13}\)
\(\dfrac{1}{3}\) - \(\dfrac{1}{3.4}\) - \(\dfrac{1}{4.5}\) - \(\dfrac{1}{5.6}\) - \(\dfrac{1}{6.7}\) - \(\dfrac{1}{7.8}\)- \(\dfrac{1}{8.9}\) - \(\dfrac{1}{9.10}\) - \(\dfrac{1}{10.11}\) = \(x\) - \(\dfrac{5}{13}\)
\(\dfrac{1}{3}\) - (\(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + \(\dfrac{1}{5.6}\) + \(\dfrac{1}{6.7}\)+ \(\dfrac{1}{7.8}\) + \(\dfrac{1}{8.9}\) + \(\dfrac{1}{9.10}\) + \(\dfrac{1}{10.11}\) =\(x\)-\(\dfrac{5}{13}\)
\(\dfrac{1}{3}\) - (\(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\) +...+ \(\dfrac{1}{9}\) - \(\dfrac{1}{10}\) + \(\dfrac{1}{10}\) - \(\dfrac{1}{11}\)) = \(x\) - \(\dfrac{5}{13}\)
\(\dfrac{1}{3}\) - (\(\dfrac{1}{3}\) - \(\dfrac{1}{11}\)) = \(x\) - \(\dfrac{5}{13}\)
\(\dfrac{1}{3}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{11}\) = \(x\) - \(\dfrac{5}{13}\)
\(x-\dfrac{5}{13}=\dfrac{1}{11}\)
\(x\) = \(\dfrac{1}{11}\) + \(\dfrac{5}{13}\)
\(x\) = \(\dfrac{68}{143}\)
c, Ta có: \(2.|\dfrac{1}{2}x - \dfrac{1}{3}| - \dfrac{3}{2} = \dfrac{1}{4}\)
\(\Rightarrow\) \(2.|\dfrac{1}{2}x - \dfrac{1}{3}| = \dfrac{7}{4}\)
\(\Rightarrow\) \(|\dfrac{1}{2}x - \dfrac{1}{3}| = \dfrac{7}{8}\)
\(\Rightarrow\) \(\left[{}\begin{matrix}\dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{7}{8}\\\dfrac{1}{2}x-\dfrac{1}{3}=-\dfrac{7}{8}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{1}{2}x=\dfrac{29}{24}\\\dfrac{1}{2}x=-\dfrac{13}{24}\end{matrix}\right.\)
\(\Rightarrow\) \(\left[{}\begin{matrix}x=\dfrac{29}{24}\\x=-\dfrac{13}{12}\end{matrix}\right.\)
Ta có: A=(1-1/2)...........................
Mà các tử có hiệu bằng 0
suy ra: Phân số có tử bằng 0
suy ra: A=0
Vậy A=0
Từ GT ; ta có : \(\left(x-1\right)\left(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}\right)=224\)
\(\Rightarrow\left(x-1\right)\left(\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{7.8}+\dfrac{1}{8.9}\right)=224\)
\(\Rightarrow\left(x-1\right)\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}\right)=224\)
\(\Rightarrow\left(x-1\right)\left(\dfrac{1}{3}-\dfrac{1}{9}\right)=224\)
\(\Rightarrow\left(x-1\right).\dfrac{2}{9}=224\)
\(\Rightarrow\left(x-1\right)=1008\)
\(\Rightarrow x=1009\)
Vậy ...