Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\)\(M=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{399}{400}\)
\(M=\frac{4-1}{4}+\frac{9-1}{9}+\frac{16-1}{16}+...+\frac{400-1}{400}\)
\(M=1-\frac{1}{4}+1-\frac{1}{9}+1-\frac{1}{16}+...+1-\frac{1}{400}\)
\(M=\left(1+1+1+...+1\right)-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{400}\right)\)
\(M=\left(1+1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{20^2}\right)\)
Do từ 2 đến 20 có \(20-2+1=19\) nên :
\(M=19-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{20^2}\right)\)
Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{20^2}\)
\(A>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{20.21}\)
\(A>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{20}-\frac{1}{21}\)
\(A>\frac{1}{2}-\frac{1}{21}\)
\(\Rightarrow\)\(M=19-A>19-\frac{1}{2}+\frac{1}{21}=18,5+\frac{1}{21}>8\)
\(\Rightarrow\)\(M>8\) ( đpcm )
Còn câu b) bn xem lại đề đi, nếu đề đúng thì mk sai :v
Chúc bạn học tốt ~
\(M=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+\frac{24}{25}...+\frac{399}{400}\)
\(=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+\left(1-\frac{1}{16}\right)+\left(1-\frac{1}{25}\right)+...+\left(1-\frac{1}{400}\right)\)
\(=\left(1+1+1+....+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{20^2}\right)\)
\(=19-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{20^2}\right)\)
Đặt \(N=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{20^2}\)
\(< P=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+....+\frac{1}{20\cdot21}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{20}-\frac{1}{21}\)
\(=\frac{1}{2}-\frac{1}{21}\)
\(\Rightarrow M+N>19-\frac{1}{2}+\frac{1}{21}=\frac{37}{2}+\frac{1}{21}>8\)
b sai đề.chừng nào chữa đề thì làm
A = 3/4 + 8/9 + 15/16 + ... + 399/400
A = 1 - 1/4 + 1 - 1/9 + 1 - 1/16 + ... + 1 - 1/400
A = (1 + 1 + 1 + ... +1) - (1/4 + 1/9 + 1/16 + ... + 1/400)
A = 19 - (1/2.2 + 1/3.3 + 1/4.4 + ... + 1/20.20)
đặt b = 1/2.2 + 1/3.3 + 1/4.4 + ... + 1/20.20
có 1/2.2 < 1/1.2 ; 1/3.3 < 1/2.3 ; ... 1/20.20 < 1/19.20
=> b < 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/19.20
=> b < 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/19 - 1/20
=> b < 1 - 1/20
=> b < 1
mà A = 19 - b
=> A > 18
\(A=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{399}{400}\)
\(=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+.....+\frac{20^2-1}{20^2}\)
\(=19-\left(\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{20^2}\right)\)
\(>19-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+....+\frac{1}{19\cdot20}\right)\)
\(=19-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{19}-\frac{1}{20}\right)\)
\(=19-\left(1-\frac{1}{20}\right)\)
\(>19-1=18\)
\(A=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+\frac{4^2-1}{4^2}+...+\frac{10^2-1}{10^2}.\)
A là tổng của 9 số hạng; mỗi số hạng đều nhỏ hơn 1 nên A<9*1<50.
\(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}....\frac{899}{900}\)
\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}....\frac{29.31}{30.30}\)
\(=\frac{1.2.3....29}{2.3.4....30}.\frac{3.4.5....31}{2.3.4....30}\)
\(=\frac{1}{30}.\frac{31}{2}=\frac{31}{60}\)
\(A\approx7.5\)