Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) n2 + 1 chia hết cho n - 1 (n thuộc N, n khác 1)
\(\Rightarrow\frac{n^2+1}{n-1}\in N\Rightarrow\frac{n^2+1}{n-1}=\frac{n^2+n-n-1+2}{n-1}=\frac{n\left(n+1\right)-\left(n+1\right)+2}{n-1}=\frac{\left(n-1\right)\left(n+1\right)+2}{n-1}=n+1+\frac{2}{n-1}\in N\)
Mà \(n+1\in N\)\(\Rightarrow\frac{2}{n-1}\in N\Rightarrow\)2 chia hết cho n - 1
Từ đây bạn tự làm tiếp nha........
a ) \(\left(n+3\right)^2-\left(n-1\right)^2\)
\(=\left(n+3+n-1\right)\left(n+3-n+1\right)\)
\(=\left(2n+2\right).4\)
\(=8\left(n+1\right)\) chia hết cho 8
\(\Rightarrow\left(n+3\right)^2-\left(n-1\right)^2⋮8\)
b ) \(\left(2n+1\right)^2-1\)
\(=\left(2n+1-1\right)\left(2n+1+1\right)\)
\(=2n.\left(2n+2\right)\)
\(=2.2n\left(n+1\right)\)
\(=4n\left(n+1\right)\)
Ta có : \(n\left(n+1\right)\) là tích của hai số tự nhiên liên tiếp nên \(n\left(n+1\right)⋮2\)
\(\Rightarrow4n\left(n+1\right)⋮8\).
c ) Gọi 2 số lẻ liên tiếp là \(2n+1\) và \(2n-1\)
Ta có : \(\left(2n+1\right)^2-\left(2n-1\right)^2\)
\(=\left(2n+1+2n-1\right)\left(2n+1-2n+1\right)\)
\(=4n.2\)
\(=8n\) chia hết cho 8
Vậy .........
b) dễ lắm cậu tự làm nha , tách ra thành 2 vế rồi rút gọn lại
c) \(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n.9-2^n.4+3^n.1-2^n.1\)
\(=3^n.\left(9+1\right)-2^n.\left(4+1\right)\)
\(=3^n.10-2^n.5\)
\(=3^n.10-2^{n-1}.2.5\)
\(=3^n.10-2^{n-1}.10\)
\(=10.\left(3^n.2^{n-1}\right)\)
Bài 4 :
Gọi các số đó là a,a+1,a+2,a+3.......,a+45
Ta có
a+(a+1)+(a+2)+(a+3)+..........+(a+45)
46a+ (1+2+3+4+5+.........+45)
46a+1035
Ta thấy 46a chia hết cho 46 , 1035 không chia hết cho 46
=> 46a +1035 không chia hết cho 46
Vậy 46 số tự nhiên liên tiếp không chia hết cho 46
Nếu n chia 5 dư 1, 3 thì n^2 chia 5 dư 1
=> n^2 + 4 chia hết cho 5
Nếu n chia 5 dư 2,4 thì n^2 chia 5 dư 4
=> n^2 + 1 chia hết cho 5
Nếu n chia hết cho 5
=> A chia hết cho 5