K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2023

a: \(G=8^8+2^{20}\)

\(=2^{24}+2^{20}\)

\(=2^{20}\left(2^4+1\right)=2^{20}\cdot17⋮17\)

b: Sửa đề: \(H=2+2^2+2^3+...+2^{60}\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)

\(=3\left(2+2^3+...+2^{59}\right)⋮3\)

\(H=2+2^2+2^3+...+2^{60}\)

\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(=7\left(2+2^4+...+2^{58}\right)⋮7\)

\(H=2+2^2+2^3+...+2^{60}\)

\(=\left(2+2^2+2^3+2^4\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)

\(=2\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)

\(=15\left(2+2^5+...+2^{57}\right)⋮15\)

c: \(E=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{1989}\left(1+3+3^2\right)\)

\(=13\left(1+3^3+...+3^{1989}\right)⋮13\)

\(E=1+3+3^2+3^3+...+3^{1991}\)

\(=\left(1+3+3^2+3^3+3^4+3^5\right)+\left(3^6+3^7+3^8+3^9+3^{10}+3^{11}\right)+...+3^{1986}+3^{1987}+3^{1988}+3^{1989}+3^{1990}+3^{1991}\)

\(=364\left(1+3^6+...+3^{1986}\right)⋮14\)

23 tháng 12 2023

A = 8⁸ + 2²⁰

= (2³)⁸ + 2²⁰

= 2²⁴ + 2²⁰

= 2²⁰.(2⁴ + 1)

= 2²⁰.17 ⋮ 17

Vậy A ⋮ 17

27 tháng 8 2021

giúp mik nếu đúg mik sẽ tik

 

27 tháng 8 2021

giúp mik ik

 

22 tháng 10 2021

\(C=\left(3+3^3+3^5\right)+\left(3^7+3^9+3^{11}\right)+...+\left(3^{1987}+3^{1989}+3^{1991}\right)\\ C=\left(3+3^3+3^5\right)+3^6\left(3+3^3+3^5\right)+...+3^{1986}\left(3+3^3+3^5\right)\\ C=\left(3+3^3+3^5\right)\left(1+3^6+...+3^{1986}\right)\\ C=273\left(1+3^6+...+3^{1986}\right)\\ C=13\cdot21\left(1+3^6+...+3^{1986}\right)⋮13\\ C=\left(3+3^3+3^5+3^7\right)+\left(3^9+3^{11}+3^{13}+3^{15}\right)+...+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)\\ C=\left(3+3^3+3^5+3^7\right)+3^8\left(3+3^3+3^5+3^7\right)+...+3^{1984}\left(3+3^3+3^5+3^7\right)\\ C=\left(3+3^3+3^5+3^7\right)\left(1+3^8+...+3^{1984}\right)\\ C=2460\left(1+3^8+...+3^{1984}\right)\\ C=41\cdot60\left(1+3^8+...+3^{1984}\right)⋮41\)

23 tháng 8 2021

a) \(\overline{ab}+\overline{ba}=10a+b+10b+a=11a+11b=11.\left(a+b\right)\)

Vì 11⋮11 nên \(\overline{ab}+\overline{ba}\)⋮11

23 tháng 8 2021

b) \(\overline{ab}-\overline{ba}=10a+b-\left(10b+a\right)=10a+b-10b-a=9a-9b=9.\left(a-b\right)\)

Vì 9⋮9 nên với \(a>b\) thì \(\overline{ab}-\overline{ba}⋮9\)

10 tháng 10 2021

giúp mình với mình chuẩn bị phải nộp bài rồi T~T 

10 tháng 10 2021

\(B=2+2^2+2^3+...+2^{60}\)

\(=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(=7\cdot\left(2+...+2^{58}\right)⋮7\)

4 tháng 8 2016

Để 5a + 3b và 13a + 8b chia hết cho 2016 thì 

5a chia hết cho 2016 và 3b chia hết cho 2016

<=> 13a chia hết 2016 và 8b chia hết 2016

Ta có : 2016 không chia hết cho 5, 

=> Nếu a và b không chia hết cho 2016 thì 5a + 3b không chia hết cho 2016 (a)

Ta có : 2016 không chia hết cho 13

=>  Nếu a và b không chia hết cho 2016 thì 13a + 8b không chia hết cho 2016 (b)

Từ (a) và (b) Ta chứng minh được a và b chia hết cho 2016 

4 tháng 8 2016

Silver bullet anh coi đúng hk?

Vì \(\hept{\begin{cases}5a+3b⋮1995\\13a+8b⋮1995\end{cases}\Rightarrow\hept{\begin{cases}8.\left(5a+3b\right)⋮1995\\3.\left(13a+8b\right)⋮1995\end{cases}\Rightarrow}\hept{\begin{cases}40a+24b⋮1995\\39a+24b⋮1995\end{cases}}}\)

=> (40a+24b)−(39a+24b)⋮1995

=> 40a+24b−39a−24b⋮1995

=> b⋮1995(1)

=> 8b⋮1995

Mặt khác 13a+8b⋮1995

=> 13a⋮1995Mà (13;1995)=1

=> a⋮1995(2)Từ (1) và (2)

=> a,b⋮1995(đpcm)

4 tháng 11 2019

bạn giải sai chắc chắn 100% mk đc cô giảng bài này rồi

Vì 5a+3b \(⋮\)1995=>8(5a+3b) ⋮ 1995=> 40a+24b ⋮ 1995     (1)

Vì 13a+8b⋮ 1995=>3(13a+8b)⋮ 1995=>39a+24b⋮ 1995         (2)

từ (1),(2) => 40+24b -39a -24b ⋮ 1995 => a ⋮ 1995

bạn làm tương tự với b nhé