Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TA CÓ:
A=30+3+32+33+........+311
(30+3+32+33)+....+(38+39+310+311)
3(0+1+3+32)+......+38(0+1+3+32)
3.13+....+38.13 cHIA HẾT CHO 13 NÊN A CHIA HẾT CHO 13( đpcm)
a/
\(A=3\left(1+3+3^2\right)+...+3^{118}\left(1+3+3^2\right)=\)
\(=13\left(3+3^4+3^7+...+3^{118}\right)⋮13\)
\(A=3\left(1+3+3^2+3^3\right)+...+3^{117}\left(1+3+3^2+3^3\right)=\)
\(A=40\left(3+3^5+3^9+...+3^{117}\right)⋮40\)
b/
\(A=3+3^2\left(1+3+3^2+...+3^{118}\right)=\)
\(=3+9\left(1+3+3^2+...+3^{118}\right)\) chia 9 dư 3 nên A không chia hết cho 9
c/
\(3A=3^2+3^3+3^4+...+3^{121}\)
\(\Rightarrow2A=3A-A=3^{121}-3\Rightarrow2A+3=3^{121}\)
\(2A+3=3^{121}=3.3^{120}=3.\left(3^4\right)^{30}=3.81^{30}\) có tận cùng là 3 nên 2A+3 không phải là số chính phương
A=3(1+3)+3^3(1+3)+...+3^119(1+3)
=4(3+3^3+...+3^119) chia hết cho 4
A=3(1+3+3^2)+...+3^118(1+3+3^2)
=13(3+...+3^118) chia hết cho 13
a)Ta có:A=3+32+33+...+318
=(3+32)+(33+34)+...+(317+318)
=3(1+3)+33(1+3)+...+317(1+3)
=3.4+33.4+...+317.4
Vì 4\(⋮\)4 nên 3.4+33.4+...+317.4\(⋮\)4
hay A\(⋮\)4
Ta có:A=3+32+33+...+318
=(3+32+33)+(34+35+36)+...+(316+317+318)
=3(1+3+32)+34(1+3+32)+...+316(1+3+32)
=3.13+34.13+...+316.13
Vì 13\(⋮\)13 nên 3.13+34.13+...+316.13\(⋮\)13
hay A\(⋮\)13
Vậy A chia hết cho 4, 13.
A=3+32+33+...+318
A=(3+32)+(33+34)+...+(317+318)
A=3(1+3)+33(1+3)+...+317(1+3)
A=3x4+33x4+...+317x4
A=4x(1+33+...+317) chia hết cho 4
a, chứng tỏ A chia hết cho 40
a: A=3(1+3+3^2+3^3)+...+3^129(1+3+3^2+3^3)
=40(3+...+3^129) chia hết cho 40
b: A=(3+3^2+3^3)+....+3^129(3+3^2+3^3)
=39(1+...+3^129) chia hết cho 39
c: A chia hết cho 40
A chia hết cho 3
=>A chia hết cho BCNN(40;3)=120