K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2023

a, chứng tỏ A chia hết cho 40

a: A=3(1+3+3^2+3^3)+...+3^129(1+3+3^2+3^3)

=40(3+...+3^129) chia hết cho 40

b: A=(3+3^2+3^3)+....+3^129(3+3^2+3^3)

=39(1+...+3^129) chia hết cho 39

c: A chia hết cho 40

A chia hết cho 3

=>A chia hết cho BCNN(40;3)=120

23 tháng 10 2015

TA CÓ:

A=30+3+32+33+........+311

(30+3+32+33)+....+(38+39+310+311)

3(0+1+3+32)+......+38(0+1+3+32

3.13+....+38.13 cHIA HẾT CHO 13 NÊN A CHIA HẾT CHO 13( đpcm)

 

4 tháng 8 2021
Fikj Hrtui
31 tháng 10 2023

a/

\(A=3\left(1+3+3^2\right)+...+3^{118}\left(1+3+3^2\right)=\)

\(=13\left(3+3^4+3^7+...+3^{118}\right)⋮13\)

 

\(A=3\left(1+3+3^2+3^3\right)+...+3^{117}\left(1+3+3^2+3^3\right)=\)

\(A=40\left(3+3^5+3^9+...+3^{117}\right)⋮40\)

b/

\(A=3+3^2\left(1+3+3^2+...+3^{118}\right)=\)

\(=3+9\left(1+3+3^2+...+3^{118}\right)\) chia 9 dư 3 nên A không chia hết cho 9

c/

\(3A=3^2+3^3+3^4+...+3^{121}\)

\(\Rightarrow2A=3A-A=3^{121}-3\Rightarrow2A+3=3^{121}\)

\(2A+3=3^{121}=3.3^{120}=3.\left(3^4\right)^{30}=3.81^{30}\) có tận cùng là 3 nên 2A+3 không phải là số chính phương

A=3(1+3)+3^3(1+3)+...+3^119(1+3)

=4(3+3^3+...+3^119) chia hết cho 4

A=3(1+3+3^2)+...+3^118(1+3+3^2)

=13(3+...+3^118) chia hết cho 13

10 tháng 11 2019

a)Ta có:A=3+32+33+...+318

            =(3+32)+(33+34)+...+(317+318)

            =3(1+3)+33(1+3)+...+317(1+3)

            =3.4+33.4+...+317.4

Vì 4\(⋮\)4 nên 3.4+33.4+...+317.4\(⋮\)4

hay A\(⋮\)4

Ta có:A=3+32+33+...+318

            =(3+32+33)+(34+35+36)+...+(316+317+318)

            =3(1+3+32)+34(1+3+32)+...+316(1+3+32)

            =3.13+34.13+...+316.13

Vì 13\(⋮\)13 nên 3.13+34.13+...+316.13\(⋮\)13

hay A\(⋮\)13

Vậy A chia hết cho 4, 13.

10 tháng 11 2019

A=3+32+33+...+318

A=(3+32)+(33+34)+...+(317+318)

A=3(1+3)+33(1+3)+...+317(1+3)

A=3x4+33x4+...+317x4

A=4x(1+33+...+317) chia hết cho 4

12 tháng 7 2018

ai tích mình mình tích lại cho

1 tháng 3 2020

k di

e he he