Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Rút gọn hết ta được :
a/ 41x - 17 = -21
=> 41x = -4 => x = 4/41
b/ 34x - 17 = 0
=> 34x = 17
=> x = 17/34 = 1/2
c/ 19x + 56 = 52
=> 19x = -4
=> x = -4/19
d/ 20x2 - 16x - 34 = 10x2 + 3x - 34
=> 10x2 - 19x = 0
=> x(10x - 19) = 0
=> x = 0
hoặc 10x - 19 = 0 => 10x = 19 => x = 19/10
Vậy x = 0 ; x = 19/10
Rút gọn hết ta được :
a/ 41x - 17 = -21
=> 41x = -4 => x = 4/41
b/ 34x - 17 = 0
=> 34x = 17
=> x = 17/34 = 1/2
c/ 19x + 56 = 52
=> 19x = -4
=> x = -4/19
d/ 20x 2 - 16x - 34 = 10x 2 + 3x - 34
=> 10x 2 - 19x = 0
=> x(10x - 19) = 0
=> x = 0 hoặc 10x - 19 = 0
=> 10x = 19
=> x = 19/10
Vậy x = 0 ; x = 19/10
\(\left(x^2+3\right)\left(3-x^2\right)\)
\(\left(x^2+3\right)\left(-x^2+3\right)\)
\(\left(-x^2+3\right).x^2+3\left(-x^2+3\right)\)
\(-x^2.x^2+3x^2+3\left(-x^2+3\right)\)
\(-x^2.x^2+3x^2-3x^2+9\)
\(-x^2.x^2+9\)
1: Ta có: \(\left(x+3\right)^2-\left(x+2\right)\left(x-2\right)=4x+17\)
\(\Leftrightarrow x^2+6x+9-x^2+4-4x=17\)
\(\Leftrightarrow x=2\)
3: Ta có: \(\left(2x+3\right)\left(x-1\right)+\left(2x-3\right)\left(1-x\right)=0\)
\(\Leftrightarrow2x^2-2x+3x-3+2x-2x^2-3+3x=0\)
\(\Leftrightarrow6x=6\)
hay x=1
v) \(\left(-\dfrac{1}{2}x+3\right)\left(2x+6-4c^3\right)\)
\(=-\dfrac{1}{2}\left(2x+6-4c^3\right)+3\left(2x+6-4c^3\right)\)
\(=-x^2-3x+2c^3x+6x+18-12c^3\)
\(=-x^2+3x+2c^3x+18-12c^3\)
f) \(\left(2x-5\right)\left(x^2-x+3\right)\)
\(=2x\left(x^2-x+3\right)-5\left(x^2-x+3\right)\)
\(=2x^3-2x^2+6x-5x^2+5x-15\)
\(=2x^3-7x^2+11x-15\)
w) \(\left(3x+1\right)\left(x^2-2x-5\right)\)
\(=3x\left(x^2-2x-5\right)+\left(x^2-2x-5\right)\)
\(=3x^3-6x^2-15x+x^2-2x-5\)
\(=3x^3-5x^2-17x-5\)
x) \(\left(6x-3\right)\left(x^2+x-1\right)\)
\(=6x\left(x^2+x-1\right)-3\left(x^2+x-1\right)\)
\(=6x^3+6x^2-6x-3x^2-3x+3\)
\(=6x^3+3x^2-9x+3\)
y) \(\left(5x-2\right)\left(3x+1-x^2\right)\)
\(=5x\left(3x+1-x^2\right)-2\left(3x+1-x^2\right)\)
\(=15x^2+5x-5x^3-6x-2+2x^2\)
\(=-5x^3+17x^2-x-2\)
z) \(\left(\dfrac{3}{4}x+1\right)\left(4x^2+4x+4\right)\)
\(=\dfrac{3}{4}x\left(4x^2+4x+4\right)+\left(4x^2+4x+4\right)\)
\(=3x^3+3x^2+3x+4x^2+4x+4\)
\(=3x^3+7x^2+7x+4\)
f: =2x^3-2x^2+6x-5x^2+5x-15
=2x^3-7x^2+11x-15
w: =3x^3-6x^2-15x+x^2-2x-5
=3x^3-5x^2-17x-5
x: =6x^3+6x^2-6x-3x^2-3x+3
=6x^3+3x^2-9x+3
y: =(5x-2)(-x^2+3x+1)
=-5x^3+15x^2+5x+2x^2-6x-2
=-5x^3+17x^2-x-2
z: =3x^3+3x^2+3x+4x^2+4x+4
=3x^3+7x^2+7x+4
\(a)\dfrac{x-3}{x-2}+\dfrac{x-2}{x-4}=-1.\left(x\ne2;4\right).\\ \Leftrightarrow\dfrac{\left(x-3\right)\left(x-4\right)+\left(x-2\right)^2}{\left(x-2\right)\left(x-4\right)}=-1.\\ \Rightarrow x^2-4x-3x+12+x^2-4x+4+x^2-4x-2x+8=0.\\ \Leftrightarrow3x^2-17x+24=0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{8}{3}.\\x=3.\end{matrix}\right.\) (TM).
\(b)3x+12=0.\\ \Leftrightarrow3x=-12.\\ \Leftrightarrow x=-4.\)
\(c)5+2x=x-5.\\ \Leftrightarrow2x-x=-5-5.\\ \Leftrightarrow x=-10.\)
\(d)2x\left(x-2\right)+5\left(x-2\right)=0.\\ \Leftrightarrow\left(2x+5\right)\left(x-2\right)=0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-5}{2}.\\x=2.\end{matrix}\right.\)
\(e)\dfrac{3x-4}{2}=\dfrac{4x+1}{3}.\\ \Rightarrow3\left(3x-4\right)-2\left(4x+1\right)=0.\\ \Leftrightarrow9x-12-8x-2=0.\\ \Leftrightarrow x=14.\)
\(f)\dfrac{2x}{x-1}-\dfrac{x}{x+1}=1.\left(x\ne\pm1\right).\\ \Leftrightarrow\dfrac{2x^2+2x-x^2+x}{x^2-1}=1.\\ \Leftrightarrow x^2+3x-x^2+1=0.\\ \Leftrightarrow3x+1=0.\\ \Leftrightarrow x=\dfrac{-1}{3}.\)
\(g)\dfrac{2x}{x-1}+\dfrac{3-2x}{x+2}=\dfrac{6}{\left(x-1\right)\left(x+2\right)}.\left(x\ne1;-2\right).\\ \Leftrightarrow\dfrac{2x^2+4x+\left(3-2x\right)\left(x-1\right)}{\left(x-1\right)\left(x+2\right)}=\dfrac{6}{\left(x-1\right)\left(x+2\right)}.\\ \Rightarrow2x^2+4x+3x-3-2x^2+2x-6=0.\\ \Leftrightarrow9x=9.\)
\(\Leftrightarrow x=1\left(koTM\right).\)
a: \(=12x^2-9x-\left(12x^2+10x-6x-5\right)\)
\(=12x^2-9x-12x^2-4x+5\)
=-13x+5
b: \(=3x\left(x^2-2x+1\right)-2x\left(x^2-9\right)+4x\left(x-4\right)\)
\(=3x^3-6x^2+3x-2x^3+18x+4x^2-16x\)
\(=x^3-2x^2+5x\)
c: \(=x^3-3x^2+3x-1-\left(x^3-8\right)+3\left(x^2-16\right)\)
\(=x^3-3x^2+3x-1-x^3+8+3x^2-48\)
\(=3x-41\)
a) \(2x\left(x-3\right)+4\left(x^2-5\right)=6x^2+1\)
\(\Rightarrow2x^2-6x+4x^2-20-6x^2-1=0\)
\(\Rightarrow-6x=21\)
\(\Rightarrow x=\frac{-7}{2}\)
Vậy..........
b) \(\left(2x-3\right)2x+\left(5-4x\right)x=3x\left(1+4x\right)\)
\(\Rightarrow4x^2-6x+5x-4x^2=3x+12x^2\)
\(\Rightarrow-12x^2-4x=0\)
\(\Rightarrow-4x\left(3x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{-1}{3}\end{cases}}\)
Vậy.........