Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow\left\{{}\begin{matrix}2x-y=7\\2x-4y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3y=-3\\2x-y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=3\end{matrix}\right.\)
b: \(\Leftrightarrow\left\{{}\begin{matrix}2x+3y=-2\\x-4y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+3y=-2\\2x-8y=20\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}11y=-22\\x-4y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-2\\x=10+4y=10-8=2\end{matrix}\right.\)
c: \(\Leftrightarrow\left\{{}\begin{matrix}6x-2y=-4\\5x-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=3x+2=-15+2=-13\end{matrix}\right.\)
d: \(\Leftrightarrow\left\{{}\begin{matrix}2x+3y=7\\2x-4y=-14\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7y=21\\x=-7+2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=-1\end{matrix}\right.\)
Bài 1 : dùng ĐK chặn x;y
Bài 2: pt trùng phương đặt x8 = y rồi dùng Vi-ét cho pt 1 rồi Vi-ét cho pt 2
Bài 3: rút x;y theo m rồi quy P về pt chỉ có ẩn m -> tổng bình phương cộng vs 1 hằng số
Bài 4: Đi ngủ .VV
Cách chặn x ; y của a khó quá :( nghĩ mãi ko ra , đành làm cách khác
\(1,ĐKXĐ:x\ge-y\)
Từ hệ \(\Rightarrow\hept{\begin{cases}\sqrt{x^2+x+2}=y+\sqrt{x+y}\\x+1=y+\sqrt{x+y}\end{cases}}\)
\(\Rightarrow\sqrt{x^2+x+2}=x+1\)
\(\Leftrightarrow\hept{\begin{cases}x\ge-1\\x^2+x+2=x^2+2x+1\end{cases}}\)
\(\Leftrightarrow x=1\)
Thế vào hệ có \(\sqrt{y+1}=2-y\)
\(\Leftrightarrow\hept{\begin{cases}-1\le y\le2\\y+1=y^2-4y+4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-1\le y\le2\\y^2-5y+3=0\end{cases}}\)
\(\Leftrightarrow y=\frac{5-\sqrt{13}}{2}\)
Vậy hệ có nghiệm \(\hept{\begin{cases}x=1\\y=\frac{5-\sqrt{13}}{2}\end{cases}}\)
\(a,\)\(\hept{\begin{cases}3x+y=3\\2x-y=7\end{cases}}\)\(\Rightarrow3x+y+2x-y=3+7\)\(\Rightarrow5x=10\Rightarrow x=2\)
Mà \(3x+y=3\Rightarrow3.2+y=3\Rightarrow y=3-6=-3\)
Vậy \(\hept{\begin{cases}x=2\\y=-3\end{cases}}\)
\(b,\hept{\begin{cases}2x+5y=8\\2x-3y=0\end{cases}}\)\(\Rightarrow2x+5y-\left(2x-3y\right)=8-0\)
\(\Rightarrow2x+5y-2x+3y=8\)\(\Rightarrow8y=8\Rightarrow y=1\)
Mà \(2x+5y=8\Rightarrow2x+5=8\Rightarrow2x=\frac{8-5}{2}=\frac{3}{2}\)
Vậy \(\hept{\begin{cases}x=\frac{3}{2}\\y=1\end{cases}}\)
\(c,\hept{\begin{cases}4x+3y=6\\2x+y=4\end{cases}\Rightarrow\hept{\begin{cases}4x+3y=6\\4x+2y=8\end{cases}}}\)
\(\Rightarrow4x+3y-\left(4x+2y\right)=6-8\)
\(\Rightarrow4x+3y-4x-2y=-2\)
\(\Rightarrow y=-2\)
Mà \(4x+3y=6\Rightarrow4x-6=6\Rightarrow4x=12\Leftrightarrow x=3\)
Vậy \(\hept{\begin{cases}x=3\\y=-2\end{cases}}\)
Làm tương tự nha cậu
Câu 1a thì được nè :v
( 3x + 1)( 4x + 1)( 6x + 1)( 12x + 1) = 2
⇔ 4( 3x + 1)3( 4x + 1)2( 6x + 1)( 12x + 1) = 2.4.3.2
⇔ ( 12x + 4)( 12x + 3)( 12x + 2)( 12x + 1) =48 ( 1)
Đặt : 12x + 1 = a , ta có :
( 1) ⇔ a( a+ 1)( a + 2)( a + 3) = 48
⇔ ( a2 + 3a)( a2 + 3a +2) = 48
Đặt : a3 + 3a = t , ta có :
t( t +2) =48
⇔ t2 + 2t - 48 = 0
⇔ t2 - 6t + 8t - 48 = 0
⇔ t( t - 6) + 8( t - 6) = 0
⇔ ( t - 6)( t + 8) = 0
⇔ t = 6 hoặc t = -8
Tự thế vào mà tìm a sau đó suy ra x nha
Bài 1:
b)
HPT \(\left\{\begin{matrix} x^2+\frac{1}{y^2}+\frac{4x}{y}=2\\ 2\left(x+\frac{1}{y}\right)+\frac{x}{y}=3\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} \left(x+\frac{1}{y}\right)^2+\frac{2x}{y}=2\\ 2\left(x+\frac{1}{y}\right)+\frac{x}{y}=3\end{matrix}\right.\)
Lấy PT(1) trừ 2PT(2) thu được:
\(\left(x+\frac{1}{y}\right)^2-4\left(x+\frac{1}{y}\right)=-4\)
\(\Leftrightarrow \left(x+\frac{1}{y}-2\right)^2=0\Rightarrow x+\frac{1}{y}=2\)
Thay vào thu được \(\frac{x}{y}=-1\)
Theo định lý Viete đảo thì \((x,\frac{1}{y})\) là nghiệm của PT:
\(X^2-2X-1=0\)
\(\Rightarrow (x,\frac{1}{y})=(1+\sqrt{2}; 1-\sqrt{2})\) hoặc \((1-\sqrt{2}; 1+\sqrt{2})\)
Tức là: \((x,y)=(1+\sqrt{2}, -1-\sqrt{2}); (1-\sqrt{2}; -1+\sqrt{2})\)
a) \(2x^3-5x^2+2x=0\)
<=> \(x\left(2x^2-5x+2\right)=0\)
<=> \(\orbr{\begin{cases}x=0\\2x^2-5x+2=0\left(1\right)\end{cases}}\)
Giải (1) : \(\Delta=\left(-5\right)^2-4.2.2=9>0\)
pt (1) có 2 nghiệm phân biệt:
\(\orbr{\begin{cases}x=\frac{5-\sqrt{9}}{2.2}=\frac{1}{2}\\x=\frac{5+\sqrt{9}}{2.2}=2\end{cases}}\)
Vậy có 3 nghiệm phân biệt...
b) \(\hept{\begin{cases}2x+3y=-7\\x=-2-2y\end{cases}\Leftrightarrow}\hept{\begin{cases}2\left(-2-2y\right)+3y=-7\\x=-2-2y\end{cases}\Leftrightarrow\hept{\begin{cases}-4-4y+3y=-7\\x=-2-2y\end{cases}\Leftrightarrow}\hept{\begin{cases}y=3\\x=-8\end{cases}}}\)
d) phương trình có : \(\Delta=\left(2m-1\right)^2-4.2.\left(m-1\right)=4m^2-4m+1-8m+8=4m^2-12m+9=\left(2m-3\right)^2\ge0\)
Với mọi m
Như vậy phương trình có nghiệm với mọi m