Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
a) Để đa thức có nghiệm
\(\Leftrightarrow x^2-64=0\)
\(\Leftrightarrow x^2=64\)
\(\Leftrightarrow x=\pm8\)
Vậy ...
d) Để đa thức có nghiệm
\(\Leftrightarrow x^2-81=0\)
\(\Leftrightarrow x^2=81\)
\(\Leftrightarrow x=\pm9\)
Vậy ...
h) Để đa thức có nghiệm
\(\Leftrightarrow x^2-6x=0\)
\(\Leftrightarrow\left(x-6\right)x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
Vậy ...
Các câu còn lại làm tương tự.
a, x\(^2\) - 64 = 0
\(\Rightarrow\) x\(^2\) = 0 + 64
= 64
= 8\(^2\)
\(\Rightarrow\) x = 8
Vậy nghiệm của \(x^2-64\) là 8
d, \(x^2-81\) = 0
\(\Rightarrow\) x\(^2\) = 81
= 9\(^2\)
\(\Rightarrow\) x = 9
vậy nghiệm của \(x^2-81\) là 9
`Answer:`
Ta có lý thuyết sau: Hai đơn thức đồng dạng là hai đơn thức có hệ số khác `0` và có cùng phần biến. Các số khác `0` được coi là những đơn thức đồng dạng.
Vậy đơn thức `-1/2 xy^2` đồng dạng với đơn thức `xy^2`
`=>` Chọn C.
\(C.xy^2\)
\(\text{Lưu ý:Hai đơn thúc đồng dạng là hai đơn thúc có hệ số khác 0 và có cùng phần biến.}\)
\(\text{Lí thuyết:SKG/33 tập 2}\)
1, A = x^2 + 6x + 2018
= x^2 + 2.x.3 + 3^2 - 3^2 + 2018
= (x + 3)^2 -3^2 + 2018
= (x + 3)^2 + 2009
=>. GTNN of A là 2009
Mình cũng không chắc nữa, nếu đúng thì các ý khác bạn tham khảo nhé
\(A=x^2+6x+2018\)
\(A=\left(x^2+6x+9\right)+2009\)
\(A=\left(x+3\right)^2+2009\)
Mà \(\left(x+3\right)^2\ge0\forall x\)
\(\Rightarrow A\ge2009\)
Dấu "=" xảy ra khi : \(x+3=0\Leftrightarrow x=-3\)
Vậy ...
\(B=x^2-5x+20\)
\(B=\left(x^2-5x+\frac{25}{4}\right)+\frac{55}{4}\)
\(B=\left(x-\frac{5}{2}\right)^2+\frac{55}{4}\)
Mà \(\left(x-\frac{5}{2}\right)^2\ge0\forall x\)
\(\Rightarrow B\ge\frac{55}{4}\)
Dấu "=" xảy ra khi : \(x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\)
Vậy ...
\(C=x^2+5x+10\)
\(C=\left(x^2+5x+\frac{25}{4}\right)+\frac{15}{4}\)
\(C=\left(x+\frac{5}{2}\right)^2+\frac{15}{4}\)
Mà \(\left(x+\frac{5}{2}\right)^2\ge0\forall x\)
\(\Rightarrow C\ge\frac{15}{4}\)
Dấu "=" xảy ra khi : \(x+\frac{5}{2}=0\Leftrightarrow x=-\frac{5}{2}\)
Vậy ...
\(D=x^2+10x-30\)
\(D=\left(x^2+10x+25\right)-55\)
\(D=\left(x+5\right)^2-55\)
Mà \(\left(x+5\right)^2\ge0\forall x\)
\(\Rightarrow D\ge-55\)
Dấu "=" xảy ra khi : \(x+5=0\Leftrightarrow x=-5\)
Vậy ...
\(F\left(x\right)=x^5+7x^4-6x^3+x^2\)
\(G\left(x\right)=3x^4-x^5+x^2-2x^3+3x^2-5\)
\(=-x^5+3x^4-2x^3+4x^2-5\)
1)Ta có: 2009 = 2010 - 1 = x - 1(do x = 2010).
Thay 2009 = x - 1 vào đa thức A(x), ta có:
A(2010)=x^2010 - (x-1).x^2009 - (x-1).x^2008 - ... - (x-1).x +1
=x^2010 - x^2010 + x^2009 - x^2008 +x^2008 - ... - x^2 + x +1
=x+1=2010 + 1 =2011.
Vậy giá trị của đa thức A(x) tại x =2010 là 2011
1
a, 4x2+4x+2
= 2x2+2x2+2x+2x+2
= 2x2+(2x2+2x)+(2x+2)
= 2x2+ 2x(x+1)+2(x+1)
= 2x2+(2x+2)(x+1)
= 2x2+2(x+1)(x+1)
=2x2+2(x+1)2
Để 2x2+2(x+1)2=0
=>\(\left\{{}\begin{matrix}2x^2=0\\2\left(x+1\right)^2=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x^2=0\\\left(x+1\right)^2=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)(vô lý)
=> đa thức 4x2+4x+2 vô nghiệm
M = xy - x2y2 + x4y4 – x6y6 + x8y8 tại x = -1 và y = -1.
Thay x = -1; y = -1 vào biểu thức ta được:
M = (-1)(-1) - (-1)2.(-1)2 + (-1)4. (-1)4-(-1)6.(-1)6 + (-1)8.(-1)8
= 1 -1 + 1 - 1+ 1 = 1.
xy - x2y2 + x4y4 – x6y6 + x8y8 tại x = -1 và y = -1.
Thay x = -1; y = -1 vào biểu thức ta được:
(-1)(-1) - (-1)2.(-1)2 + (-1)4. (-1)4-(-1)6.(-1)6 + (-1)8.(-1)8
= 1 -1 + 1 - 1+ 1
= 1