Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 2x^2 + 3x + 3 2x - 1 x + 2 2x^2 - x 4x + 3 4x - 2 5
b, Để giá trị đa thức A chia hết cho giá trị đa thức B <=>
\(2x-1\inƯ\left(5\right)=\left\{1;5\right\}\)
2x - 1 | 1 | 5 |
2x | 2 | 6 |
x | 1 | 3 |
Bài 4:
a: \(\Leftrightarrow x^3-3x^2+3x-1-x^3-27+3x^2-12=2\)
\(\Leftrightarrow3x-40=2\)
=>3x=42
hay x=14
b: \(\Leftrightarrow x^3+8-x^3-2x=0\)
=>-2x+8=0
=>-2x=-8
hay x=4
c: \(x\left(x-2\right)+\left(x-2\right)=0\)
=>(x-2)(x+1)=0
=>x=2 hoặc x=-1
d: \(5x\left(x-3\right)-x+3=0\)
=>5x(x-3)-(x-3)=0
=>(x-3)(5x-1)=0
=>x=3 hoặc x=1/5
e: \(3x\left(x-5\right)-\left(x-1\right)\left(3x+2\right)=30\)
\(\Leftrightarrow3x^2-15x-3x^2-2x+3x+2=30\)
=>-14x=28
hay x=-2
f: \(\Leftrightarrow\left(x+2\right)\left(x+30-x-5\right)=0\)
=>x+2=0
hay x=-2
Bài 1:
a, 2x(3x - y)(3x+y)
= 2x(9x2 - y2)
= 18x3 - 2xy2
b, (x - 5)(x + 5)
= x2 - 25
Bài 2: Ta có:
(n - 1)(3 - 2n) - n(n + 5)
= 3n - 2n2 - 3 + 2n - n2 - 5n
= (3n + 2n - 5n) + (-2n2 - n2) - 3
= -3n2 - 3
= -3(n2 + 1)
nên (n - 1)(3 - 2n) - n(n + 5) chia hết cho 3 với mọi n
Bài 1
ta có a+3+b-3 =a +b chia hết cho 4
nên (b-a )(a+b) cũng chia hết cho 4
bài 2.
ta có: \(M=6x^2-5x-6-12xy+6y^2+6y-3x+2y+2027\)
\(=6\left(x-y\right)^2-8\left(x-y\right)+2021=24-16+2021=2029\)
a: A chia hết cho B
=>2x^2y^2-5xy^3 chia hết cho 3x^my^2
=>2-m>=0 và 1-m>=0
=>m<=1
mà m là số nguyên
nên m=0 hoặc m=1
b: Th1: m=0
=>\(\dfrac{A}{B}=\dfrac{2x^2y^2-5xy^3}{3y^2}=\dfrac{2}{3}x^2-\dfrac{5}{3}xy\)
TH2: m=1
=>\(\dfrac{A}{B}=\dfrac{2x^2y^2-5xy^3}{3xy^2}=\dfrac{2}{3}x-\dfrac{5}{3}y\)