Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt tử số của phân số cần tìm là x ta có mẫu của phân số cần tìm là x+5 Ta có phương trình
\(\frac{x+17}{\left(x+5\right)+2}=\frac{x+5}{x}\Leftrightarrow5x=35\Leftrightarrow x=7\)
Vậy tử số của phân số cần tìm là 7
Mẫu của phân số cần tìm là 7+5=12
Phân số cần tìm là \(\frac{7}{12}\)
gọi x (đơn vị) là tử số của phân số ban đầu (x>0)
x+5 (đơn vị) là mẫu số của phân số ban đầu
tử số của phân số lúc sau là x+17(đơn vị)
mẫu số của phân số lúc sau là x+7 (đơn vị)
Ta được phân số mới là số nghịch đảo của phân số ban đầu nên ta có phương trình
x+17/x+7=x+5/x
giải pt ra x = 7
gọi tử số của phân số cần tìm là a
mẫu số của phân số cần tìm là a+5
nêu thêm tử 17 đơn zị , mẫu 2 đơn zị thì ta có
\(\frac{a+17}{a+7}\)
theo đề bài t có phương trình
\(\frac{a+17}{a+7}=\frac{a+5}{a}\)\(\Leftrightarrow\)\(a\left(a+17\right)=\left(a+5\right)\left(a+7\right)\Leftrightarrow a^2+17a=a^2+7a+5a+35\)
=>\(5a=35=>a=7\)
phâ số cần tìm là \(\frac{7}{12}\)
Bài 2:
a: Xét ΔABC vuông tại B có
\(AB^2+BC^2=AC^2\)
hay BC=20(cm)
Xét ΔABC vuông tại B có BH là đường cao ứng với cạnh huyền AC
nên \(\left\{{}\begin{matrix}BA^2=AH\cdot AC\\BC^2=CH\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=9\left(cm\right)\\CH=16\left(cm\right)\end{matrix}\right.\)
Câu 2:
Gọi số phải tìm là ab
Vì tổng các chữ số của số cần tìm là 9 nên a+b=9(1)
Vì khi thêm vào số đó 63 đơn vị thì số thu được cũng viết bằng hai chữ số đó nhưng theo thứ tự ngược lại nên \(10a+b+63=10b+a\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}a+b=9\\10a+b+63=10b+a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=9-b\\10a+b+63-10b-a=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=9-b\\9a-9b=-63\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=9-b\\a-b=-7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=9-b\\9-b-b=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=9-b\\-2b=-16\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=9-8=1\\b=8\end{matrix}\right.\)
Vậy: Số cần tìm là 18
a) Ta có :
\(S_{ABC}=\dfrac{1}{2}AB.AC.sinA\)
\(S_{ADE}=\dfrac{1}{2}AD.AE.sinA\)
\(\Rightarrow\dfrac{S_{ABC}}{S_{ADE}}=\dfrac{AB.AC}{AD.AE}=\dfrac{48.64}{32.24}=4\)
\(\Rightarrow S_{ABC}=4S_{ADE}\)
b) Xét \(\Delta ABC\) ta có :
\(p=\left(AB+AC+BC\right):2=\left(48+36+64\right):2=74\left(cm\right)\)
Theo công thức Heron :
\(S_{ABC}=\sqrt[]{p\left(p-AB\right)\left(p-AC\right)\left(p-BC\right)}\)
\(\Rightarrow S_{ABC}=\sqrt[]{74\left(74-48\right)\left(74-64\right)\left(74-36\right)}\)
\(\Rightarrow S_{ABC}=\sqrt[]{74.26.10.38}=4\sqrt[]{5.13.19.37}=4\sqrt[]{45695}\left(cm^2\right)\)
\(\Rightarrow S_{ADE}=\dfrac{S_{ABC}}{4}=\dfrac{4\sqrt[]{45695}}{4}=\sqrt[]{45695}\left(cm^2\right)\)
Xét \(\Delta ADE\) ta có :
Đặt \(DE=x\left(x>0\right)\)
\(p=\dfrac{\left(AD+AE+x\right)}{2}=\dfrac{\left(32+24+x\right)}{2}=\dfrac{56+x}{2}=28+\dfrac{x}{2}\left(cm\right)\)
\(S_{ADE}=\sqrt[]{p\left(p-AD\right)\left(p-AE\right)\left(p-DE\right)}\)
\(\Rightarrow S_{ADE}=\sqrt[]{\left(28+\dfrac{x}{2}\right)\left(28+\dfrac{x}{2}-32\right)\left(28+\dfrac{x}{2}-24\right)\left(28+\dfrac{x}{2}-x\right)}\)
\(\Rightarrow S_{ADE}=\sqrt[]{\left(28+\dfrac{x}{2}\right)\left(\dfrac{x}{2}-4\right)\left(\dfrac{x}{2}+4\right)\left(28-\dfrac{x}{2}\right)}\)
\(\Rightarrow S^2_{ADE}=\left(28+\dfrac{x}{2}\right)\left(\dfrac{x}{2}-4\right)\left(\dfrac{x}{2}+4\right)\left(28-\dfrac{x}{2}\right)\)
\(\Rightarrow45695=\left(28+\dfrac{x}{2}\right)\left(\dfrac{x}{2}-4\right)\left(\dfrac{x}{2}+4\right)\left(28-\dfrac{x}{2}\right)\)
\(\Rightarrow5.13.19.37=\left(28+\dfrac{x}{2}\right)\left(\dfrac{x}{2}-4\right)\left(\dfrac{x}{2}+4\right)\left(28-\dfrac{x}{2}\right)\left(1\right)\)
Ta thấy khi \(x=18\) thì vế phải có :
\(\left\{{}\begin{matrix}\dfrac{x}{2}-4=5\\\dfrac{x}{2}+4=13\\28-\dfrac{x}{2}=19\\28+\dfrac{x}{2}=37\end{matrix}\right.\) \(\Rightarrow x=18\) pt (1) thỏa
Vậy \(DE=18\left(cm\right)\)