K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: \(\left(x-\dfrac{2}{5}\right)\left(x+\dfrac{2}{7}\right)>0\)

\(\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{2}{5}\\x< -\dfrac{2}{7}\end{matrix}\right.\)

28 tháng 10 2023

a: \(5^{\left(x-2\right)\left(x+3\right)}=1\)

=>\(\left(x-2\right)\left(x+3\right)=0\)

=>\(\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)

c: \(\left|x^2+2x\right|+\left|y^2-9\right|=0\)

mà \(\left\{{}\begin{matrix}\left|x^2+2x\right|>=0\forall x\\\left|y^2-9\right|>=0\forall y\end{matrix}\right.\)

nên \(\left\{{}\begin{matrix}x^2+2x=0\\y^2-9=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\left(x+2\right)=0\\\left(y-3\right)\left(y+3\right)=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x\in\left\{0;-2\right\}\\y\in\left\{3;-3\right\}\end{matrix}\right.\)

d: \(2^x+2^{x+1}+2^{x+2}+2^{x+3}=120\)

=>\(2^x\left(1+2+2^2+2^3\right)=120\)

=>\(2^x\cdot15=120\)

=>\(2^x=8\)

=>x=3

e: \(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)

=>\(\left(x-7\right)^{x+11}-\left(x-7\right)^{x+1}=0\)

=>\(\left(x-7\right)^{x+1}\left[\left(x-7\right)^{10}-1\right]=0\)

=>\(\left[{}\begin{matrix}x-7=0\\x-7=1\\x-7=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=8\\x=6\end{matrix}\right.\)

14 tháng 2 2022

a, \(\dfrac{x}{2}+\dfrac{3x}{5}=-\dfrac{3}{2}\Rightarrow5x+6x=-15\Leftrightarrow x=-\dfrac{15}{11}\)

b, TH1 : \(\dfrac{2}{3}x-\dfrac{4}{7}=0\Leftrightarrow x=\dfrac{6}{7}\);TH2 : \(\dfrac{1}{2}-\dfrac{3}{7x}=0\Rightarrow7x-6=0\Leftrightarrow x=\dfrac{6}{7}\)

c, TH1 : \(\dfrac{4}{5}-2x=0\Leftrightarrow x=\dfrac{4}{5}:2=\dfrac{2}{5}\)

TH2 : \(\dfrac{1}{3}+\dfrac{3}{5x}=0\Rightarrow5x+9=0\Leftrightarrow x=-\dfrac{9}{5}\)

30 tháng 4 2023

\(a\\ -5x^2+3x.\left(x+2\right)=-5x^2+3x^2+6x=-2x^2+6x\\ b\\ -2x.\left(1-x^2\right)-2x^3=-2x+2x^3-2x^3=-2x\\ c\\ 4x.\left(x-1\right)-4.\left(x^2+2x-1\right)\\ =4x^2-4x-4x^2-8x+4=-12x+4\)

30 tháng 4 2023

\(d\\ 6x^3-2x^2.\left(-x^2-3x\right)=6x^3+2x^4+6x^3=2x^4+12x^3\\ e\\ 3x.\left(x-1\right)-\left(1+2x\right).5x\\ =3x^2-3x-5x-10x^2=-7x^2-8x\\ f\\ -5x^2-\left(x-6\right).\left(-2x^2\right)=-5x^2+2x^3-12x^2=2x^3-17x^2\)

a: \(\left(x+\dfrac{1}{4}\right)+\left(3x-4\right)+2\left(x-3\right)=1\)

=>\(x+\dfrac{1}{4}+3x-4+2x-6=1\)

=>\(6x-\dfrac{39}{4}=1\)

=>\(6x=1+\dfrac{39}{4}=\dfrac{43}{4}\)

=>\(x=\dfrac{43}{4}:6=\dfrac{43}{24}\)

b: \(2\left(x-3\right)=3\left(x+2\right)-x+1\)

=>\(2x-6=3x+6-x+1\)

=>2x-6=2x+7

=>-6=7(vô lý)

c: \(x\left(x+3\right)+x\left(x-2\right)=2x\left(x-1\right)\)

=>\(x^2+3x+x^2-2x=2x^2-2x\)

=>3x-2x=-2x

=>3x=0

=>x=0

d: \(\left(x-1\right)\cdot3x-2\left(x+2\right)-2x=x\left(x-1\right)\)

=>\(3x^2-3x-2x-4-2x=x^2-x\)

=>\(3x^2-7x-4-x^2+x=0\)

=>\(2x^2-6x-4=0\)

=>\(x^2-3x-2=0\)

=>\(x=\dfrac{3\pm\sqrt{17}}{2}\)

1 tháng 7 2017

Ta có : (2x + 1)4 = (2x + 1)6

=> (2x + 1)- (2x + 1)= 0

<=> (2x + 1)4[1 - (2x + 1)2] = 0

\(\Leftrightarrow\orbr{\begin{cases}\left(2x+1\right)^4=0\\1-\left(2x+1\right)^2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x+1=0\\\left(2x+1\right)^2=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x=-1\\\left(2x+1\right)=1;-1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\2x=0;-2\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=0;-1\end{cases}}\)

Vậy x thuộc \(-\frac{1}{2};0;-1\)

1 tháng 7 2017

hk hỉu j hết bn ạ