Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{-2}{9}-\dfrac{3}{4}+\dfrac{3}{5}+\dfrac{1}{15}+\dfrac{1}{57}+\dfrac{1}{3}-\dfrac{1}{36}\)
\(=\left(-\dfrac{2}{9}-\dfrac{3}{4}-\dfrac{1}{36}\right)+\left(\dfrac{3}{5}+\dfrac{1}{15}+\dfrac{1}{3}\right)+\dfrac{1}{57}\)
\(=\dfrac{-8-27-1}{36}+\dfrac{9+1+5}{15}+\dfrac{1}{57}\)
\(=-\dfrac{36}{36}+\dfrac{15}{15}+\dfrac{1}{57}\)
\(=\dfrac{1}{57}\)
A=\(\dfrac{-2}{9}\)+\(\dfrac{-3}{4}\)+\(\dfrac{3}{5}\)+\(\dfrac{1}{15}\)+\(\dfrac{1}{57}\)+\(\dfrac{1}{3}\)+\(\dfrac{-1}{36}\)
A=(\(\dfrac{-2}{9}\)+\(\dfrac{-3}{4}\)+\(\dfrac{-1}{36}\))+(\(\dfrac{3}{5}\)+\(\dfrac{1}{15}\)+\(\dfrac{1}{3}\))
A=-1+1=0 B=\(\dfrac{1}{2}\)+\(\dfrac{-1}{5}\)+\(\dfrac{-5}{7}\)+\(\dfrac{1}{6}\)+\(\dfrac{-3}{35}\)+\(\dfrac{1}{3}\)+\(\dfrac{1}{41}\) B=(\(\dfrac{-1}{5}\)+\(\dfrac{-5}{7}\)+\(\dfrac{-3}{35}\))+(\(\dfrac{1}{2}\)+\(\dfrac{1}{6}\)+\(\dfrac{1}{3}\))+\(\dfrac{1}{41}\) B=-1+1+\(\dfrac{1}{41}\)=\(\dfrac{1}{41}\)
câu 1 : A=-2/9+-3/4+3/5+1/15+1/57+1/3+-1/36
=(-2/9+-3/4+-1/36)+(3/5+1/15+1/3)
Vậy p/s 1/57 đâu bạn ?
A=−29+−34+35+115+157+13−136A=-29+-34+35+115+157+13-136
→A=(−29+−34+13−136)+(35+115)+157→A=(-29+-34+13-136)+(35+115)+157
→A=(−836+−2736+1236−136)+(915+115)+157→A=(-836+-2736+1236-136)+(915+115)+157
→A=−23+23+157→A=-23+23+157
→A=0+157→A=0+157
→A=157→A=157
Vậy A=157
Gọi ƯCLN(12n+1,30n+2)=d(d>0,d∈Z)ƯCLN(12n+1,30n+2)=d(d>0,d∈Z)
⇒12n+1⋮d,30n+2⋮d⇒12n+1⋮d,30n+2⋮d
⇒60n+5⋮d,60n+4⋮d⇒60n+5⋮d,60n+4⋮d
⇒60n+5−60n−4⋮d⇒60n+5-60n-4⋮d
⇒1⋮d⇒1⋮d
⇒d∈Ư(1)={1,−1}⇒d∈Ư(1)={1,-1}
⇒12n+130n+2⇒12n+130n+2 là phân số tối giản với mọi số nguyên n