Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) vì ab > 0 nên chia cả hai vế Bất đẳng thức cho \(\sqrt{ab}\) ta được
\(\sqrt{\dfrac{c\left(a-c\right)}{ab}}+\sqrt{\dfrac{c\left(b-c\right)}{ab}}\le1\)
Áp dụng Bất đẳng thức Cauchy cho hai số
\(\Rightarrow\sqrt{\dfrac{c}{b}\left(\dfrac{a-c}{a}\right)}+\sqrt{\dfrac{c}{a}\left(\dfrac{b-c}{b}\right)}\le\dfrac{1}{2}\left(\dfrac{c}{b}+\dfrac{a-c}{a}\right)+\dfrac{1}{2}\left(\dfrac{c}{a}+\dfrac{b-c}{b}\right)=1\)
vậy nên ta có đpcm
\(\frac{2005}{\sqrt{2006} }+\frac{2006}{\sqrt{2005} }>\sqrt{2005}+\sqrt{2006} \)
<=>\(2005\sqrt{2005}+2006\sqrt{2006}>2005\sqrt{2006}+2006\sqrt{2005} \)
<=>\(\sqrt{2006}<\sqrt{2005} \)
Mình chưa học lớp 9 nên không biết!!!!
Bó tay!!!
Đúng thì k nha mình còn -71 điểm giúp mình nha!!!!
áp dụng bất đẳng thức:\(\frac{1}{a}\)+\(\frac{1}{b}\)=>\(\frac{4}{a+b}\)(áp dụng 2 cái đầu trc,rồi lấy KQ đó áp dụng típ vào cái thứ 3,rồi cái cuối
Ta có
\(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}+\frac{16}{d}\ge\frac{\left(1+1+2+4\right)^2}{a+b+c+d}=\frac{64}{a+b+c+d}\)
\(\sqrt{6^2+8^2}=10\) (cm) => Tg DEF vuông tại D
a) DK=\(\dfrac{DE.DF}{EF}=\dfrac{6.8}{10}=4,8\left(cm\right)\)
FK=\(\dfrac{8^2}{10}=6,6\left(cm\right)\)
b) \(\sin E=\dfrac{DK}{DE}=\dfrac{4,8}{6}=0,8\Rightarrow E\approx53\)
=> F=37
c) DM là tia phân giác của góc EDF, nên ta có:
\(\dfrac{EM}{DE}=\dfrac{MF}{DF}=\dfrac{EF}{DE+DF}=\dfrac{10}{6+8}=\dfrac{5}{7}\)
=> EM=\(\dfrac{30}{7}\)
MF=\(\dfrac{40}{7}\)
Sory bài làm bị lỗi, gửi lại:
Áp dụng BĐT Cauchy - Schwarz dạng Engel:
\(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{1+1}=\dfrac{1}{2}\)
\(a^4+b^4\ge\dfrac{\left(a^2+b^2\right)^2}{1+1}\ge\dfrac{\left(\dfrac{1}{2}\right)^2}{2}=\dfrac{1}{8}\)
\("="\Leftrightarrow a=b=\dfrac{1}{2}\)