K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(=\dfrac{54-34}{189-119}=\dfrac{20}{70}=\dfrac{2}{7}\)

b: \(=\dfrac{6+6\cdot4+6\cdot49}{15+15\cdot4+15\cdot49}=\dfrac{6}{15}=\dfrac{2}{5}\)

c: \(=\dfrac{13\left(3-18\right)}{40\left(15-2\right)}=\dfrac{-15}{40}=-\dfrac{3}{8}\)

NV
7 tháng 3 2021

\(\left\{{}\begin{matrix}\dfrac{a+b}{6}=\dfrac{b+c}{5}\\\dfrac{a+b}{6}=\dfrac{c+a}{7}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=\dfrac{a}{2}\\c=\dfrac{3a}{4}\end{matrix}\right.\)

\(cosA=\dfrac{b^2+c^2-a^2}{2bc}=\dfrac{\dfrac{a^2}{4}+\dfrac{9a^2}{16}-a^2}{2.\dfrac{a}{2}.\dfrac{3a}{4}}=-\dfrac{1}{4}\)

\(cosB=\dfrac{a^2+c^2-b^2}{2ac}=\dfrac{a^2+\dfrac{9a^2}{16}-\dfrac{a^2}{4}}{2a.\dfrac{3a}{4}}=\dfrac{7}{8}\)

\(cosC=\dfrac{a^2+b^2-c^2}{2ab}=\dfrac{11}{16}\)

\(P=-\dfrac{1}{4}+\dfrac{14}{8}+\dfrac{44}{16}=\dfrac{17}{4}\)

17 tháng 10 2020

Bạn muốn tính của gì cơ ?

Mk ko hiểu

17 tháng 10 2020

cô bảo mình điền số tiếp theo vô chỗ ? mà mình tính mãi cũng không ra ...

22 tháng 7 2019

Ta có:

$p^2=5q^2+4$ chia 5 dư 4 suy ra $p=5k+2(k\in \mathbb{N}^*)$

Ta có:

$(5k+2)^2=5q^2+4\Leftrightarrow 5k^2+4k=q^2\Rightarrow q^2\vdots k$

Mặt khác q là số nguyên tố và $q>k$ nên $k=1$. Thay vào ta được $p=7,q=3$

22 tháng 7 2019

Gửi bài trên sai chỗ :D

\(tanb-4cotb=3\)

=>\(tanb-\dfrac{4}{tanb}=3\)

=>\(tan^2b-4=3tanb\)

=>(tanb-4)(tanb+1)=0

=>tan b=-1 hoặc tan b=4

0<=b<=90

=>tan b ko thể bằng -1 được

=>tan b=4

1+tan^2b=1/cos^2b

=>1/cos^2b=17

=>cosb=1/căn 17

=>sin b=4/căn 17

\(P=\left(\dfrac{1}{\sqrt{17}}+\dfrac{4}{\sqrt{17}}\right)\cdot\sqrt{17}=5\)

2 tháng 12 2020

1.

\(\left\{{}\begin{matrix}x^3+y^3+x^3y^3=17\\x+y+xy=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^3-3xy\left(x+y\right)+x^3y^3=17\\x+y+xy=5\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\left(a^2\ge4b\right)\)

Hệ phương trình trở thành \(\left\{{}\begin{matrix}a^3-3ab+b^3=17\\a+b=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(a+b\right)^3-3ab\left(a+b+1\right)=17\\a+b=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}ab=6\\a+b=5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}a=2;b=3\left(l\right)\\a=3;b=2\end{matrix}\right.\)

\(\left\{{}\begin{matrix}a=3\\b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\end{matrix}\right.\)

2 tháng 12 2020

2.

\(\left\{{}\begin{matrix}x^3+y^3=2\\xy\left(x+y\right)=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^3-3xy\left(x+y\right)=2\\xy\left(x+y\right)=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^3-6=2\\xy\left(x+y\right)=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^3=8\\xy\left(x+y\right)=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=2\\xy\left(x+y\right)=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=2\\xy=1\end{matrix}\right.\)

\(\Leftrightarrow x=y=1\)

NV
5 tháng 6 2020

\(E=\frac{cosx}{sinx}+\frac{sinx}{1+cosx}=\frac{cosx+cos^2x+sin^2x}{sinx\left(1+cosx\right)}=\frac{cosx+1}{sinx\left(1+cosx\right)}=\frac{1}{sinx}\)

17.

\(\frac{\pi}{2}< a< \pi\Rightarrow cosa< 0\Rightarrow cosa=-\sqrt{1-sin^2a}=-\frac{12}{13}\)

\(0< b< \frac{\pi}{2}\Rightarrow sinb>0\Rightarrow sinb=\sqrt{1-cos^2b}=\frac{4}{5}\)

\(sin\left(a+b\right)=sina.cosb+cosa.sinb=\frac{5}{13}.\frac{3}{5}-\frac{12}{13}.\frac{4}{5}=-\frac{33}{65}\)

18.

\(K=sin\frac{2\pi}{7}+sin\frac{6\pi}{7}+sin\frac{4\pi}{7}\)

\(\Leftrightarrow K.sin\frac{\pi}{7}=sin\frac{\pi}{7}.sin\frac{2\pi}{7}+sin\frac{\pi}{7}.sin\frac{4\pi}{7}+sin\frac{\pi}{7}.sin\frac{6\pi}{7}\)

\(=\frac{1}{2}\left(cos\frac{\pi}{7}-cos\frac{3\pi}{7}+cos\frac{\pi}{7}-cos\frac{5\pi}{7}+cos\frac{5\pi}{7}-cos\frac{7\pi}{7}\right)\)

\(=\frac{1}{2}\left(cos\frac{\pi}{7}-cos\pi\right)=\frac{1}{2}\left(cos\frac{\pi}{7}+1\right)=\frac{1}{2}\left(2cos^2\frac{\pi}{14}-1+1\right)=cos^2\frac{\pi}{14}\)

\(\Leftrightarrow K.2.sin\frac{\pi}{14}.cos\frac{\pi}{14}=cos^2\frac{\pi}{14}\)

\(\Leftrightarrow2K=\frac{cos\frac{\pi}{14}}{sin\frac{\pi}{14}}=cot\frac{\pi}{14}=a\Rightarrow K=\frac{a}{2}\)

6 tháng 9 2021

\(x^3=3+2\sqrt{2}+3-2\sqrt{2}+3\cdot\sqrt[3]{\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)}\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)\\ \Leftrightarrow x^3=6+3x\sqrt[3]{1}\\ \Leftrightarrow x^3-3x=6\)

\(y^3=17+12\sqrt{2}+17-12\sqrt{2}+3\sqrt[3]{\left(17-12\sqrt{2}\right)\left(17+12\sqrt{2}\right)}\left(\sqrt[3]{17-12\sqrt{2}}+\sqrt[3]{17+12\sqrt{2}}\right)\\ \Leftrightarrow y^3=34+3x\sqrt[3]{1}\\ \Leftrightarrow y^3-3y=34\)

Thay vào P, ta được

\(P=x^3+y^3-3x-3y+1979\\ P=\left(x^3-3x\right)+\left(y^3-3y\right)+1979\\ P=6+34+1979=2019\)

 

NV
6 tháng 9 2021

\(x^3=6+3\sqrt[3]{\left(3+2\sqrt[]{2}\right)\left(3-2\sqrt[]{2}\right)}\left(\sqrt[3]{3+2\sqrt[]{2}}+\sqrt[3]{3-2\sqrt[]{2}}\right)\)

\(\Rightarrow x^3=6+3x\)

\(\Rightarrow x^3-3x=6\)

Tương tự:

\(y^3=34+3\sqrt[3]{\left(17+12\sqrt[]{2}\right)\left(17-12\sqrt[]{2}\right)}\left(\sqrt[3]{17+12\sqrt[]{2}}+\sqrt[3]{17-12\sqrt[]{2}}\right)\)

\(\Rightarrow y^3=34+3y\)

\(\Rightarrow y^3-3y=34\)

Do đó:

\(P=\left(x^3-3x\right)+\left(y^3-3y\right)+1979=6+34+1979=...\)

a: \(A=\dfrac{-3}{8}\left(16+\dfrac{8}{17}+7+\dfrac{9}{17}\right)=\dfrac{-3}{8}\cdot24=-9\)

b: \(B=\dfrac{\dfrac{3}{5}-\dfrac{3}{9}+\dfrac{3}{11}}{\dfrac{7}{5}-\dfrac{7}{9}+\dfrac{7}{11}}=\dfrac{3}{7}\)