Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ab x cb = ddd
b x b = d nên d chỉ có thể là 4; 6 hoặc 9, khi đó b sẽ là 2; 4; 3 hoặc 7
Vì hai thừa số là số có hai chữ số và tích có ba chữ số bằng nhau, nên chữ số hàng chục sẽ bé hơn hàng đơn vị. Vì vậy ta chọn b = 7
Nếu b = 7 và d = 9 ta có:
a7 x c7 = 999
( Ta thấy 7 x 7 = 49, viết 9 nhớ 4. Vậy chọn a là số mà khi nhân 7, cộng thêm 4 rồi cộng thêm ở c x 7 để có kết quả là 9 )
Thế vào phép tính suy ra ta có:
a = 2 và c = 3
27 x 37 = 999
Vậy abcd = 2739
tu ABCD=CD^2
suy ra ABCD=100AB+CD=CD^2
=100AB =CD^2-CD
=100AB =CD(CD-1).
dan den CD(CD-1) chia het cho 100=25.4
do (CD;CD-1)=1 suy ra CDchia het cho 25;CD-1 chia het cho 4
CD chia het cho 4;CD-1 chia het cho 25
TH1:CD chia het cho 25;CD-1 chia het4
suy ra CD thuoc 25;75;50.ma CD-1 chia het cho4
dan den CD=25
thay CD=25 vao . ta co
100AB=25.24=AB=6 (loai)
TH2:CD chia het cho 4;CD-1 chia het cho 25
suy ra CD thuoc 26;51;76.ma CD chia het cho 4
dan den CD=76
thay CD=16 vao . ta co
100AB=76.75=5700
dan den AB=57 (chon)
vay so can tim la
5776=76^2
\(F=\left|x\right|+\left|x+2\right|=\left|-x\right|+\left|x+2\right|\ge\left|-x+x+2\right|=2\)(Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\))Dấu "=" xảy ra \(\Leftrightarrow-x\left(x+2\right)\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}-x\ge0\\x+2\ge0\end{cases}}\\\hept{\begin{cases}-x\le0\\x+2\le0\end{cases}}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x\le0\\x\ge-2\end{cases}\Rightarrow x=0;-1;-2}\\\hept{\begin{cases}x\ge0\\x\le-2\end{cases}\Rightarrow x\in\varnothing}\end{cases}}\)
Vậy x = 0;-1;-2
cái chỗ giải -x(x+2) >=0 bạn tự giải làm 2 trường hợp: (-x>=0 và x+2>=0) hoặc (-x<=0 và x+2<=0)
BCNN(3;4)=12
BCNN(10;15;30)=60
BCNN(9;10)=90
BCNN(12;16;48)=48
Lần sau viết cái đề rõ rõ ra nhs!!!
a) \(A=2+2^2+2^3+................+2^{100}\)
\(\Rightarrow2A=2^2+2^3+2^4+................+2^{100}+2^{101}\)
\(\Rightarrow2A-A=\left(2^2+2^3+..............+2^{100}+2^{101}\right)-\left(2+2^2+............+2^{100}\right)\)
\(\Rightarrow A=2^{101}-2\)
b) \(B=1+3+3^2+..................+3^{2009}\)
\(\Rightarrow3B=3+3^2+3^3+..................+3^{2009}+3^{2010}\)
\(\Rightarrow3B-B=\left(3+3^2+...............+3^{2010}\right)-\left(1+3+3^2+.............+3^{2009}\right)\)
\(\Rightarrow2B=3^{2010}-1\)
\(\Rightarrow B=\dfrac{3^{2010}-1}{2}\)
c) \(C=4+4^2+4^3+................+4^n\)
\(\Rightarrow4C=4^2+4^3+.................+4^n+4^{n+1}\)
\(\Rightarrow4C-C=\left(4^2+4^3+.............+4^n+4^{n+1}\right)-\left(4+4^2+............+4^n\right)\)
\(\Rightarrow3C=4^{n+1}-4\)
\(\Rightarrow C=\dfrac{4^{n+1}-4}{3}\)