K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2015

a A=\(2\)+\(2^2\)+\(2^3\)+\(2^4\)+...+\(2^{59}\)+\(2^{60}\)

A={\(2\)+\(2^2\)}+{\(2^3\)+\(2^4\)}+{\(2^5\)+\(2^6\)}+...+{\(2^{59}\)+\(2^{60}\)}

A=3.2+3.8+3.32+...

A=3.{2+8+32+...}

Suy ra:A chia het cho 3

b Làm tương tự như câu a nhưng ghép 3 số và tách thành tích của 7.k

18 tháng 10 2015

=2.(1+2+22)+...+258.(1+2+23)

A=3.(2+23+25+...+259)=7.(2+24+27+...+255+258)chia hết cho 7 vì có số 7

Vây bạn tick mình nhé

5 tháng 8 2023

a, A = 2 + 22 + 23 + 24 +....+ 260

A = (2 + 22) + ( 23 + 24) +...+ (259 + 260)

A = 2.(1 + 2) + 23.(1 + 2) +...+ 259.(1 + 2)

A = 2.3 + 23.3 +...+ 259.3

A = 3.( 2 + 23+...+ 259) vì 3 ⋮ 3 ⇒ A = 3.(2 + 23 +...+ 259) ⋮ 3 (đpcm)

A = 2 + 22 + 23+ 24+...+ 260 

A = ( 2 + 22 + 23) + ( 24 + 25 + 26) +...+ (258 + 259 + 260)

A = 2.( 1 + 2 + 4) + 24.(1 + 2 + 4)+...+ 258.(1 + 2+4)

A = 2.7 + 24.7 +...+258.7

A = 7.(2 + 2+ ...+ 258) vì 7 ⋮ 7 ⇒ A = 7.(2 + 24+...+ 258)⋮ 7(đpcm)

    A = 2 + 22 + 23 + 24 +...+ 260

    A = (2 + 22 + 23 + 24) +...+( 257 + 258 + 259+ 260)

   A = 2.(1 + 2 + 22 + 23) +...+ 257.(1 + 2 + 22+23)

   A = 2.30 + ...+ 257. 30

  A = 30.( 2 +...+ 257) vì 30 ⋮ 15 ⇒ 30.( 2 + ...+ 257) ⋮ 15 (đpcm)

 

 

 

 

14 tháng 10 2021

\(a,A=7^{15}+7^{16}+7^{17}\)

\(A=7^{15}\left(1+7+7^2\right)\)

\(A=7^{15}.57\)

Ta có :

\(A=7^{15}.57⋮57\)

\(\Rightarrow A⋮57\)

14 tháng 10 2021

\(b,B=2+2^2+2^3+....+2^{60}\)

\(B=\left(2+2^2+2^3\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)

\(B=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(B=2.7+...+2^{58}.7\)

\(B=7\left(2+2^4+....+2^{58}\right)\)

Ta có :

\(B=7\left(2+2^4+....+2^{58}\right)⋮7\)

\(\Rightarrow B⋮7\)

27 tháng 10 2022

Bài 1: 

a: \(=2^{24}+2^{60}=2^{24}\left(2^{36}+1\right)\)

\(=2^{24}\left(2^4+1\right)\cdot A=17\cdot B⋮17\)

b: \(A=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)

\(=15\cdot\left(2+2^5+...+2^{57}\right)\) chia hết cho 3;5;15

\(A=2\left(1+2+2^2+...+2^{59}\right)⋮2\)

\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(=7\left(2+2^4+...+2^{58}\right)⋮7\)

12 tháng 10 2015

a) A = 2 + 22 + 23 + 24 + ... + 259 + 260

A = ( 2 + 22 ) + ( 2+ 24 ) + ... + ( 259 + 260 )

A = 2 ( 1 + 2 ) + 23 ( 1 + 2 ) + ... + 259 ( 1 + 2 )

A = 3 ( 2 + 23 + ... + 259 )

A chia hết cho 3 ( đpcm )

b) A = 2 + 22 + 2+ 24 + ... + 259 + 260

A = ( 2 + 22 + 23 ) + ... + ( 258 + 259 + 260 )

A = 2 ( 1 + 2 + 22 ) + ... + 258 ( 1 + 2 + 22 )

A = 7 ( 2 + ... + 258 )

A chia hết cho 7 ( đpcm )

 

a)

  •  \(A=2+2^2+2^3+...+2^{60}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)

\(=2.3+2^3.3+...+2^{59}.3\)

\(=3\left(2+2^3+...+2^{59}\right)⋮3\)

  • \(A=2+2^2+2^3+...+2^{60}\)

\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)

\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(=2.7+2^4.7+...+2^{58}.7\)

\(=7\left(2+2^4+2^{58}\right)⋮7\)

  • \(A=2+2^2+2^3+...+2^{60}\)

\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)

\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)

\(=2.15+2^5.15+...+2^{57}.15\)

\(=15\left(2+2^5+2^{57}\right)⋮15\)

b) \(B=1+5+5^2+5^3+...+5^{96}+5^{97}+5^{98}\)

\(=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{96}+5^{97}+5^{98}\right)\)

\(=\left(1+5+5^2\right)+5^3\left(1+5+5^2\right)+..+5^{96}\left(1+5+5^2\right)\)

\(=31+5^3.31+...+5^{96}.31\)

\(=31\left(1+5^3+...+5^{96}\right)⋮31\)

26 tháng 7 2017

b) A=(2+22+23)+(24+25+26)+...+(258+259+260)

=>A=2(1+2+22)+24(1+2+22)+...+258(1+2+22)

=>A=7(2+24+...+258)\(⋮\)7

a) Nhóm 2 số vào 1 nhóm rồi giải như trên.

c) Nhóm 4 số vào 1 nhóm rồi giải như trên.

29 tháng 11 2018

10 bn nhanh nhất k nha

29 tháng 11 2018

\(a,\)Ta có:

\(A=3+3^2+3^3+...+3^{10}\)

    \(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^9+3^{10}\right)\)

    \(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^9\left(1+3\right)\)

    \(=3\cdot4+3^3\cdot4+...+3^9\cdot4\)

    \(=4\left(3+3^3+...+3^9\right)⋮4\)

\(\Rightarrow3+3^2+3^3+...+3^{10}⋮10\\ \Rightarrow A⋮10\)

\(\Rightarrow\)ĐPCM