Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có :
\(\frac{\left(2017^{2018}-2017^{2017}\right)}{2017^{2016}}=\frac{2017^{2017}\cdot\left(2017-1\right)}{2017^{2016}}=2017\cdot2016\)
VẬY A CÓ CHỮ SỐ TẦN CỤNG LÀ 2
b. Đề có sai không bạn ví dụ 909 có 2 chữ số giống nhau và là số tự nhiên nhưng đâu chia hết cho 37 đâu
Ko chứng tỏ đc thì chứng tỏ nó sai ! Bạn biết làm cách đấy ko ?
Ta có:
22017 + 32017 = 52017
Vì 5 nhân với chính nó thì có chữ số tận cùng là 5 nên kết quả của phép tính 22017 + 32017 có tận cùng là chữ số 5
Đảm bảo 100%
A=1+2917+20172+20173+.....+201748+201749
Đặt: C = 20172+ 20173+.....+201748+201749
=> 2017C =20173+.20174....+201749+201750
=> 2017C-C = (20173+.20174....+201749+201750 ) -(20172+ 20173+.....+201748+201749 )
=> 2016C = 201750- 20172 => C= (201750- 20172)/2016
=> A = 1+2917 + (201750- 20172)/2016 < 2017^50-1 = B
2A=2+20172+20173+20174+...+201749+201750
2A-A=201750-1
A=201750-1. Vậy A=B
Câu B
201750-1=20174.12+2-1=(20174)12.20172-1=A112.S9-1=B1.S9-1=X9-1=F8
Ta sẽ luôn có n là 1 trong 2 dạng sau: \(\left\{{}\begin{matrix}2t\\2t+1\end{matrix}\right.\)với \(t\) là 1 số tự nhiên bất kì thỏa mãn \(t\ge0\)
Với \(n=2t\) ta có: \(\left(n+2016\right)\left(n+2017\right)=\left(2t+2016\right)\left(2t+2017\right)=2\left(t+1008\right)\left(2t+2017\right)⋮2\)
Với \(n=2t+1\) ta có: \(\left(n+2016\right)\left(n+2017\right)=\left(2t+1+2016\right)\left(2t+1+2017\right)=\left(2t+2017\right)\left(2t+2018\right)=2\left(2t+2017\right)\left(t+1009\right)⋮2\)
Suy ra đpcm