K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2016

A=2014+20142+...+2014100

A=(2014+20142)+...+(201499+2014100)

A=2014.(1+2014)+...+201499.(1+2014)

A=2014.2015+...+201499.2015

A=(2014+...+201499).2015

=>A chia hết cho 2015

10 tháng 10 2016

A = 2014+2014^2+2014^3++2014^4+...+2014^100

2014 . A = 20142 + 20143 + 20144 + 20145 + ... + 2014101

2014 . A - A = (  20142 + 20143 + 20144 + 20145 + ... + 2014101 ) - ( 2014 + 20142 + 20143 + 20144 + ... + 2014100 )

2013 . A = 2014101 - 2014

A = ( 2014101  - 2014 ) : 2013

10 tháng 10 2016

Ta có:

A = 2014 + 20142 + 20143 + 20144 + ... + 2014100

2014A = 20142 + 20143 + 20144 + 20145 + ... + 2014101

2014A - A = (20142 + 20143 + 20144 + 20145 + ... + 2014101) - (2014 + 20142 + 20143 + 20144 + ... + 2014100)

2013A = 2014101 - 2014

A = \(\frac{2014^{101}-2014}{2013}\)

11 tháng 12 2017

Bạn viết đề bài chưa hính xác

20 tháng 12 2018

ai biet giup

18 tháng 6 2015

a)2014 + 2014^2 + 2014^3 + ... + 2014^10

=(2014+2014^2)+(2014^3+2014^4)+...+(2014^9+2014^10)

=2014(1+2014)+2014^3(1+2014)+...+1014^9(1+2014)

=2014.2015+2014^3.2015+...+2014^9.2015

vì 2014.2015 chia hết cho 2015

2014^3.2015 chia hết cho 2015

.....

2014^9.2015 chia hết cho 2015

=>2014.2015+2014^3.2015+...+2014^9.2015 chia hết cho 2015

vậy 2014 + 2014^2 + 2014^3 + ... + 2014^10 chia hết cho 2015 

18 tháng 6 2015

a,2014+20142+20143+....+201410

=(2014+20142)+(20143+20144)+.....+(20149+201410)

=2014.(1+2014)+20143.(1+2014)+.........+20149.(1+2014)

=2014.2015+20143.2015+..........+20149.2015

=2015.(2014+20143+...........+20149\(^._:\)2015 (đpcm)

b,4n+1\(^._:\)n+1

4n+4 -3\(^._:\)n+1

Vì 4n+4\(^._:\)n+1 =>3\(^._:\)n+1

=>n+1\(\in\){1; -1; 3; -3}

n+1n
10
-1-2
32
-3-4

KL: n\(\in\){0; 2; -2; -4}

 

3 tháng 12 2018

a) A = 2014 + 20142 + 20143 + 20144 + ..... + 20142014

A = ( 2014 + 20142 ) + ( 2014+ 20144 ) + ..... + ( 20142013 + 20142014 )

A = 2014( 1 + 2014 ) + 20143( 1 + 2014 ) + ....... 20142013( 1 + 2014 )

A = 2014 . 2015 + 20143 . 2015 + ....... + 20142013 . 2015

A = ( 2014 + 20143 + ...... 20142013 ) . 2015 chia hết cho 2015

b) Ta có 6 chia hết cho n - 1

=> n-1 thuộc Ư(6) = { 1 ; 2 ; 3 ; 6 }

Nếu n - 1 = 1 => n = 2 (tm)

Nếu n - 1 = 2 => n = 3 (tm)

Nếu n - 1 = 3 => n = 4 (tm)

Nếu n - 1 = 6 => n = 7 (tm)

Vậy n thuộc { 2 ; 3 ; 4 ; 7 }

Mk ko chắc là đúng

hok tốt