Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cần chứng minh hiệu này chia hết cho 10
Ta có :
\(2999^{2013}-2011^{2000}=\left(...9\right)^{4.503}.\left(...9\right)-\left(...1\right)=\left(...1\right).\left(...9\right)-1=\left(....9\right)-1=\left(...8\right)\)không chia hết cho 10
Xem lại đề
29992013 = (...1)
20112000 = (...1)
=> 29992013 - 20112000 = (...0) chia hết cho 2 & 5 (đpcm)
2. TA CÓ: D=\(\frac{2011+2012}{2012+2013}\)
=\(\frac{2011}{2012+2013}+\frac{2012}{2012+2013}\)
VÌ 2012+2013>2012
MÀ \(\frac{2011}{2012+2013}<\frac{2011}{2012}\)(1)
VÌ 2012+2013>2013
MÀ \(\frac{2012}{2012+2013}<\frac{2012}{2013}\)(2)
TỪ (1) VÀ (2) \(\Rightarrow\frac{2011+2012}{2012+2013}<\frac{2011}{2012}+\frac{2012}{2013}\)
VẬY C > D
Lời giải:
\(2013A=\frac{2013^6+2000.2013}{2013^6+2000}=1+\frac{2000.2012}{2013^6+2000}> 1+\frac{2000.2012}{2013^{11}+2000}\\ =\frac{2013^{11}+2000.2013}{2013^{11}+2000}=2013B\\ \Rightarrow A>B\)