K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2022

A = 20082008 + \(\dfrac{1}{2008^{2009}}\) + 1 

B = 20082007 \(\dfrac{1}{2008^{2008}}\) + 1

lấy vế trừ vế ta có:

A - B = 20082008 -   20082007 +   - \(\dfrac{1}{2008^{2008}}\)+\(\dfrac{1}{2008^{2009}}\)

A - B = 20082007. ( 2008 - 1) +  - \(\dfrac{1}{2008^{2008}}\) + \(\dfrac{1}{2008^{2009}}\)

A - B = 20082007. 2007  - \(\dfrac{1}{2008^{2008}}\) + \(\dfrac{1}{2008^{2009}}\)

20082007.  2007 >   1 > \(\dfrac{1}{2008^{2008}}\) 

⇔ 20082007.2007 - \(\dfrac{1}{2008^{2008}}\) > 0

⇔ 20082007. 2007 - \(\dfrac{1}{2008^{2008}}\) + \(\dfrac{1}{2008^{2009}}\) > 0

⇔ A - B > 0 ⇔ A > B

kết luận A > B 

29 tháng 8 2015

bằng nhau                               

29 tháng 8 2015

Ta có: \(\frac{a}{b}=\frac{a.\left(b+1\right)}{b.\left(b+1\right)}=\frac{ab+a}{b.\left(b+1\right)}\)

          \(\frac{a+1}{b+1}=\frac{b.\left(a+1\right)}{b.\left(b+1\right)}=\frac{ab+b}{b.\left(b+1\right)}\)

Xét a>b

=>\(\frac{ab+a}{b.\left(b+1\right)}>\frac{ab+b}{b.\left(b+1\right)}\)

=>\(\frac{a}{b}>\frac{a+1}{b+1}\)

Xét a<b

=>\(\frac{ab+a}{b.\left(b+1\right)}

16 tháng 5 2016

10A=10*\(\frac{10^{2006}+1}{10^{2007}+1}\)                             10B=10*\(\frac{10^{2007}+1}{10^{2008}+1}\)                           

10A=\(\frac{10^{2007}+1+9}{10^{2007}+1}\)                                10B=\(\frac{10^{2008}+1+9}{10^{2008}+1}\)

10A=1+\(\frac{9}{10^{2007}+1}\)                                10B=1+\(\frac{9}{10^{2008}+1}\)

Vì \(\frac{9}{10^{2007}+1}\)>\(\frac{9}{10^{2008}+1}\)=>1+\(\frac{9}{10^{2007}+1}\)>1+\(\frac{9}{10^{2008}+1}\)

Nên 10A>10B=>A>B

16 tháng 5 2016

Ta có: \(A=\frac{10^{2006}+1}{10^{2007}+1}\)

\(=>10A=\frac{10^{2007}+10}{10^{2007}+1}=\frac{10^{2007}+1+9}{10^{2007}+1}=\frac{10^{2007}+1}{10^{2007}+1}+\frac{9}{10^{2007}+1}=1+\frac{9}{10^{2007}+1}\)

            \(B=\frac{10^{2007}+1}{10^{2008}+1}\)

\(=>10B=\frac{10^{2008}+10}{10^{2008}+1}=\frac{10^{2008}+1+9}{10^{2008}+1}=\frac{10^{2008}+1}{10^{2008}+1}+\frac{9}{10^{2008}+1}=1+\frac{9}{10^{2008}+1}\)

Vì \(10^{2007}+1< 10^{2008}+1=>\frac{9}{10^{2007}+1}>\frac{9}{10^{2008}+1}=>1+\frac{9}{10^{2007}+1}>1+\frac{9}{10^{2008}+1}=>10A>10B=>A>B\)

1 tháng 1 2016

tick đi mình giải cho,dễ ẹc à.

24 tháng 12 2020

Ta có: \(3\cdot A=1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\)

\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\)

Do đó: 

\(3\cdot A-A=1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}-\dfrac{1}{3}-\dfrac{1}{3^2}-...-\dfrac{1}{3^{100}}\)

hay \(2\cdot A=1-\dfrac{1}{3^{100}}\)

\(\Leftrightarrow A=\left(1-\dfrac{1}{3^{100}}\right):2\)

\(\Leftrightarrow A=\left(1-\dfrac{1}{3^{100}}\right)\cdot\dfrac{1}{2}\)

\(\Leftrightarrow A=\dfrac{1}{2}-\dfrac{1}{2\cdot3^{100}}< \dfrac{1}{2}\)

hay A<B

25 tháng 12 2020

 

 

Ta có: 3⋅A=1+131+132+...+1399

A=13+132+...+13100

Do đó: 

3⋅A−A=1+131+132+...+13100−13−132−...−13100

hay 2⋅A=1−13100

⇔A=(1−13100):2

⇔A=(1−13100)⋅12

⇔A=12−12⋅3100<12

hay A<B

28 tháng 12 2018

Có \(a\left(b+1\right)< b\left(a+1\right)\Leftrightarrow ab+a< ab+b\)

\(\Rightarrow\frac{a}{b}< \frac{a+1}{b+1}\)

Áp dụng \(\frac{2^{2018}}{3^{2019}}< \frac{2^{2018}+1}{3^{2019}+1}\)

28 tháng 12 2018

Ta có:

\(1-\frac{a}{b}=\frac{b-a}{b}\)

\(1-\frac{a+1}{b+1}=\frac{b+1-a-1}{b+1}=\frac{b-a}{b+1}\)

Vì b < b + 1 và a < b; a, b nguyên dương  => b - a > 0 nên \(\frac{b-a}{b}>\frac{b-a}{b+1}\)

Do đó \(1-\frac{a}{b}>1-\frac{a+1}{b+1}\)

\(\Rightarrow\frac{a}{b}< \frac{a+1}{b+1}\)

Áp dụng chứng minh tương tự nhé bạn