Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(27 + 54x + 36{x^2} + 8{x^3} = {3^3} + {3.3^2}.2x + 3.3.{\left( {2x} \right)^2} + {\left( {2x} \right)^3} = {\left( {3 + 2x} \right)^3}\)
b) \(64{x^3} - 144{x^2}y + 108x{y^2} - 27{y^3} = {\left( {4x} \right)^3} - 3.{\left( {4x} \right)^2}.3y + 3.4x.{\left( {3y} \right)^2} - {\left( {3y} \right)^3} = {\left( {4x - 3y} \right)^3}\)
a)
A = \(\left(2x\right)^3+3.\left(2x\right)^2.y+3.\left(2x\right).y+y^3\)
= \(\left(2x+y\right)^3\)
b)
\(B=x^3-3.x^2.1+3.x.1-1^3\)
= \(\left(x-1\right)^3\)
Bài giải:
a) – x3 + 3x2– 3x + 1 = 1 – 3 . 12 . x + 3 . 1 . x2 – x3
= (1 – x)3
b) 8 – 12x + 6x2 – x3 = 23 – 3 . 22. x + 3 . 2 . x2 – x3
= (2 – x)3
\(\begin{array}{l}{x^3} + 9{x^2}y + 27x{y^2} + 27{y^3}\\ = {x^3} + 3.{x^2}.3y + 3.x.{\left( {3y} \right)^2} + {\left( {3y} \right)^3}\\ = {\left( {x + 3y} \right)^3}\end{array}\)
a) \(x^3+3x^2+3x+1=\left(x+1\right)^3\)
b) \(27y^3-9y^2+y-\frac{1}{27}=\left(3y-\frac{1}{3}\right)^3\)
c) \(8x^6+12x^4y+6x^2y+y^3=\left(2x^2+y\right)^3\)
d) \(\left(x+y\right)^3\left(x-y\right)^3=\left(x^2-y^2\right)^3\)
e) \(\left(x^2-y^2\right)^2\left(x+y\right)\left(x-y\right)=\left(x^2-y^2\right)^3\)
A)\(1-2x+x^2\)
\(=\left(1-x\right)^2\)
B)\(4y+4+y^2\)
\(=2^2+4y+y^2\)
\(=\left(2+y\right)^2\)
C)\(\frac{1}{16}+\frac{1}{2}x+x^2\)
\(=\left(\frac{1}{4}\right)^2+\frac{1}{2}x+x^2\)
\(=\left(\frac{1}{4}+x\right)\)
D)\(36x^2+12xy+y^2\)
\(=\left(6x+y\right)^2\)
a) \(\left(2+x\right)^3=2^3+3.2^2.x+3.2.x^2+x^3\)
\(=8+12x+6x^2+x^3\)
b) \(\left(y+2\right)^3=y^3+3.y^2.2+3.y.2^2+2^3\)
\(=y^3+6y^2+12y+8\)
c) \(\left(2x+3\right)^3=\left(2x\right)^3+3.\left(2x\right)^2.3+3.2x.3^2+3^3\)
\(=8x^3+36x^2+54x+27\)