Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
20173 + 20172 = 20172 . 2017 + 20172 . 1 = 20172 . ( 2017 + 1 ) = 20172 . 2018 < 20182 . 2018 = 20183
Vậy 20173 + 20172 < 20183
A=1+2+22+23+...+22017 (1)
2A=2+22+23+24+...+22018 (2)
Lấy (2) - (1) ta có:
2A - A=(2+22+23+24+...+22018)-(1+2+22+23+...+22017)
A=2+22+23+24+...+22018-1-2-22-23-...-22017
A=22018-1
Mà B=22018-1 =>A=B
b) ta có: B=20172
B=(2016+1).2017=2016.2017+2017
A=2016.2018
A=2016.(2017+1)=2016.2017+2016
Vì 2016<2017=>A<B
mình nhé
Ta có :
\(2A=2+2^2+2^3+...+2^{2018}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{2018}\right)-\left(1+2+2^2+...+2^{2017}\right)\)
\(\Rightarrow A=2^{2018}-1< 2^{2018}=B\)
Vậy A<B
\(A=\frac{2017^{2018+1}}{2017^{2018-3}}\)và \(B=\frac{2017^{2018-1}}{2017^{2018-5}}\)
Có \(A=\frac{2017^{2019}}{2017^{2015}}\)và \(B=\frac{2017^{2017}}{2017^{2013}}\)
Mà\(\frac{2017^{2019}}{2017^{2015}}>\frac{2017^{2018}}{2017^{2015}}\)và\(\frac{2017^{2017}}{2017^{2013}}>\frac{2017^{2017}}{2017^{2015}}\)
Vì \(\frac{2017^{2018}}{2017^{2015}}>\frac{2017^{2017}}{2017^{2015}}\)
Vậy A>B
a) \(A=2+2^2+2^3+...+2^{2017}\)
\(A=2\left(1+2^1+2^2+...+2^{2016}\right)\)
\(A=2.\dfrac{2^{2016+1}-1}{2-1}\)
\(A=2.\left(2^{2017}-1\right)=2^{2018}-2\)
Câu b bạn xem lại đề
Ta có : \(A=1+2+2^2+...+2^{2017}\)(1)
\(\Rightarrow2A=2+2^2+2^3+...+2^{2018}\)(2)
Lấy (2) trừ (1) ta có :
\(\Rightarrow A=2^{2018}-1\)
\(\Rightarrow A< B\). Vì \(B=2^{2018}\)
A = 1+2+22+23+.....+22017
2A = 2(1+2+22+23+.....+22017) = 2+22+23+24+.....+22018
2A - A = 2+22+23+24+.....+22018- (1+2+22+23+.....+22017)
=> A = 2+22+23+24+.....+22018-1-2-22-23-.....-22017
A =22018-1 < 22018
Vậy A < B
Ta có: \(A=\frac{2^{2017}+2}{2^{2017}+3}=1-\frac{1}{2^{2017}+3}\)
\(B=\frac{2^{2017}+1}{2^{2017}+2}=1-\frac{1}{2^{2017}+2}\)
Vì \(\frac{1}{2^{2017}+3}< \frac{1}{2^{2017}+2}\) nên \(1-\frac{1}{2^{2017}+3}>1-\frac{1}{2^{2017}+2}\)
hay A > B
A>B bạn nhé