K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giải thích các bước giải:

A = (2¹⁰.13 + 2¹⁰.65)/2⁸.104

   = (2¹⁰.13 + 2¹⁰.13.5)/2⁸.104

   = 2¹⁰.13.(1 + 5)/2⁸.104

   = 2².13.6/104

   = 4.13.6/104

   = 312/104

   = 3

Vậy A = 3.

14 tháng 9 2020

\(A=\frac{2^{10}\cdot13+2^{10}\cdot65}{2^8\cdot100}\) 

\(=\frac{2^{10}\cdot13\left(1+5\right)}{2^8\cdot2^2\cdot5^2}\) 

\(=\frac{2^{10}\cdot13\cdot6}{2^{10}\cdot5^2}\) 

\(=\frac{13\cdot6}{25}\) 

\(=\frac{78}{25}\)

9 tháng 5 2017

\(A=\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+....+\frac{3^2}{97.100}\)

\(A=3.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+....+\frac{3}{97.100}\right)\)

\(A=3.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{97}-\frac{1}{100}\right)\)

\(A=3.\left(\frac{1}{1}-\frac{1}{100}\right)=3-\frac{3}{100}=\frac{297}{100}\)

9 tháng 5 2017

\(A=\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+\frac{3^2}{10.13}+\frac{3^2}{13.16}+...+\frac{3^2}{97.100}\)

\(A=\frac{3}{1}-\frac{3}{4}+\frac{3}{4}-\frac{3}{7}+\frac{3}{7}-\frac{3}{10}+\frac{3}{10}-\frac{3}{13}+\frac{3}{13}-\frac{3}{16}+...+\frac{3}{97}-\frac{3}{100}\)

\(A=\frac{3}{1}-\frac{3}{100}\)

\(A=\frac{297}{100}\)

8 tháng 5 2017

Làm ơn viết cái đề rõ hơn dc ko vậy?

8 tháng 5 2017

-_- Viết ra đi cậu. Khó nhìn chết được.

12 tháng 12 2023

1; 73.52.54.76:(55.78)

= (73.76).(52.54) : (55.78)

= 79.56: (55.78)

= (79:78).(56:55)

= 7.5

= 35

12 tháng 12 2023

2; 33.a7.3.a2:(34.a6)

= (33.3).(a7.a2): (34.a6)

= 34.a9: (34.a6)

= (34:34).(a9:a6)

= a3

24 tháng 1 2022

a tk

24 tháng 1 2022

mik gủi 1 ý 1 lần nha

12 tháng 3 2016

minh dich mai cha ra 

cau ghi de gon hon duoc hon

12 tháng 3 2016

ko hieu gi ca

23 tháng 10 2016

(6^2 + 7^2+8^2+9^2+10^2) - (1^2 + 2^2+ 3^2+4^2+5^2)

=(36+49+64+81+100)-(1+4+9+16+25)

=300 - 55

=245

30 tháng 10 2016

cam on nhung khong con cach nao khac ly luan hon sao ?

6 tháng 10 2023

Ta có công thức tổng quát như sau:

\(A=n^k+n^{k+1}+n^{k+2}+...+n^{k+x}\Rightarrow A=\dfrac{n^{k+x+1}-n^k}{n-1}\)

Áp dụng ta có:

\(A=1+4+4^2+...+4^6=\dfrac{4^7-1}{3}\) 

\(\Rightarrow B-3A=4^7-3\cdot\dfrac{4^7-1}{3}=1\)

______

\(A=2^0+2^1+...+2^{2008}=2^{2009}-1\)

\(\Rightarrow B-A=2^{2009}-2^{2009}+1=1\)

_____

\(A=1+3+3^2+....+3^{2006}=\dfrac{3^{2007}-1}{2}\)

\(\Rightarrow B-2A=3^{2007}-2\cdot\dfrac{3^{2007}-1}{2}=1\)