Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)=\left(2+2^2+2^3\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(A=3\left(2+2^3+2^5+...+2^{59}\right)=7\left(2+2^4+2^7+...+2^{55}+2^{58}\right)\)
=> A chia hết cho 3 và A cũng chia hết cho 7
a. Ta có:
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^9+2^{10}\right)\)
\(=2.\left(1+2\right)+2^3.\left(1+2\right)+...+2^9.\left(1+2\right)\)
\(=2.3+2^3.3+...+2^9.3\)
\(=3.\left(2+2^3+...+2^9\right)\)chia hết cho 3
=> A chia hết cho 3 (đpcm).
b. Ta có:
\(A=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)\)
\(=2.\left(1+2+2^2+2^3+2^4\right)+2^6.\left(1+2+2^2+2^3+2^4\right)\)
\(=2.\left(1+2+4+8+16\right)+2^6.\left(1+2+4+8+16\right)\)
\(=2.31+2^6.31\)
\(=31.\left(2+2^6\right)\)chia hết cho 31
=> A chia hết cho 31 (đpcm).
A=(2+2^2)+(2^3+2^4)+...+(2^9+2^10)
A=(2x1+2x2)+(2^3x1+2^3x2)+...+(2^9x1+2^9x2)
A=2x(1+2)+2^3x(1+2)+....+2^9x(1+2)
A=2x3+2^3x3+...+2^9x3
A=3x(2+2^3+....+2^9)
Vì 3 chia hết cho 3=>3x(2+2^3+...+2^9) chia hết cho 3
hay A chia hết cho 3
A=2+22+23+...+210
A=(2+22)+...+(29+210)
A=2(1+2)+...+29(1+2)
A=2.3+...+29.3
A=(2+23+...+29).3
Vì (2+23+...+29).3 chia hết cho 3 nên A chia hết cho 3
mk chứng minh chia hết cho 3:
A=2+22+23+24+...+22010
A=2(1+2)+23(1+2)+...+22009(1+2)
A=2.3+23.3+...+22009.3
A=3.(2+23+...+22009) chia hết cho 3
mk chứng miinh chia hết cho 7
A=2+22+23+24+...+22010
A=2(1+2+4)+24(1+2+4)+...+22008(1+2+4)
A=2.7+24.7+...+22008.7
A=7.(2+24+...+22008) chia hết cho 7
Vậy A chia hết cho 3 và 7
- A=2+22+23+24+...+22010
A=2(1+2)+23(1+2)+...+22009(1+2)
A=2.3+23.3+...+22009.3
A=3.(2+23+...+22009) chia hết cho 3
- A=2+22+23+24+...+22010
A=2(1+2+4)+24(1+2+4)+...+22008(1+2+4)
A=2.7+24.7+...+22008.7
A=7.(2+24+...+22008) chia hết cho 7
Vậy A chia hết cho 3 và 7
P/s tham khảo nha
a,
$5^5-5^4+5^3$
$=5^3(5^2-5+1)$
$=5^3 . 21$
Mà $21 \vdots 7$
$\to 5^3 . 21 \vdots 7$
Nên $5^5-5^4+5^3 \vdots 7$ ( đpcm)
a) 55 - 54 + 53 = 53 ( 52 - 5 + 1)
= 53 . 21
Mà 21 chia hết cho 7 nên 53 . 21 chia hết cho 7
b) 76 + 75 - 74 = 74( 72 + 7 -1)
= 74 . 55
Mà 55 chia hết cho 11 nên 74 . 55 chia hết cho 11
Ý c tương tự như trên nhé!!
d) 106 - 57 = (2.5)6 - 57
= 26 . 56 - 57
= 56 ( 26 - 5)
= 56 . 59 chia hết cho 59
e) 3n+2 - 2n+2 + 3n - 2n Bạn viết sai nên mik sửa như này nha)
= 3n . 32 - 2n . 22 + 3n - 2n
= ( 3n . 32 + 3n) - (2n . 22 + 2n )
= 3n( 32 + 1) - 2n ( 22 + 1)
= 3n . 10 - 2n . 5
Ta thấy 10 chia hết cho 10 nên 3n . 10 chia hết cho 10 (1)
2 . 5 chia hết cho 10 nên 2n . 5 chia hết cho 10 (2)
Từ (1) và (2) => 3n . 10 - 2n .5 chia hết cho 10 với mọi n thuộc N*
vậy.......
f) 817 - 279 - 913
= (34)7 - ( 33)9 - (32)13
= 328 - 327 - 326
(đến đây làm tương tự ý a với ý b nhé)
Mik thấy lần sau nếu ý nào k làm đc bạn mới hỏi nhé hoặc k biết làm hết thì hỏi từng ý 1 thôi chứ bn hỏi nhiều như này người ta ngại trả lời lắm, mik cũng ngại nữa.
Nãy giờ mik viết mỏi tay mỏi mắt lắm rồi bn nhớ k cho mik nhé!!!
Ta có:
\(A=2+2^2+2^3+...+2^{10}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^9+2^{10}\right)\)
\(A=2.\left(1+2\right)+2^3.\left(1+2\right)+...+2^9.\left(1+2\right)\)
\(A=2.3+2^3.3+...+2^9.3\)
\(A=3.\left(2+2^3+...+2^9\right)\)
\(\Rightarrow A⋮3\)
\(A=2+2^2+2^3+...+2^{10}\)
\(A=2+\left(2^2+2^3+2^4\right)+\left(2^5+2^6+2^7\right)+\left(2^8+2^9+2^{10}\right)\)
\(A=2+2^2.\left(1+2+2^2\right)+2^5.\left(1+2+2^2\right)+2^8.\left(1+2+2^2\right)\)
\(A=2+2^2.7+2^5.7+2^8.7\)
\(A=2+7.\left(2^2+2^5+2^8\right)\)
\(\Rightarrow\)A chia cho 7 dư 2.