Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
\(A=2018\times2020+2021\) và \(B=2019\times2019+2021\)
\(A=2018\times2019+2018+2021\)
\(B=2018\times2019+2019+2021\)
Vì \(2019>2018\Rightarrow A< B\)
Trả lời:
\(A=\frac{2}{2018.2020}+\frac{2021}{2020}-\frac{2020}{2019}\)
\(A=\frac{1}{2018}-\frac{1}{2020}+1+\frac{1}{2020}-\left(1+\frac{1}{2018}\right)\)
\(A=\frac{1}{2018}-\frac{1}{2020}+1+\frac{1}{2020}-1-\frac{1}{2018}\)
\(A=0\)
\(A=\frac{2}{2018}\cdot2020+\frac{2021}{2020}-\frac{2019}{2018}\)
\(A=\frac{2\cdot2020-2019}{2018}+\frac{2021}{2020}\)
\(A=\frac{2021}{2018}+\frac{2021}{2020}\)
\(A=\frac{2021\cdot\left(2020+2018\right)}{2018\cdot2020}=\frac{2021\cdot4038}{2018\cdot2020}=\frac{2021\cdot2019\cdot2}{2018\cdot1010\cdot2}=\frac{2020^2-1}{2018\cdot101\cdot10}\)
\(A=\frac{4080399}{20200180}\)
Giải:
a) 2019 + 2021 - 1
= 4040 - 1
= 4039
b) 2020 x 2019 + 2018
= 4078380 + 2018
= 4080398
Học tốt!!!
\(\left(2020\frac{2018}{2021}-2019\frac{20182018}{20212021}\right):\frac{2018}{2021}\)
\(=\left(2020\frac{2018}{2021}-2019\frac{2018}{2021}\right):\frac{2018}{2021}\)
\(=1:\frac{2018}{2021}=\frac{2021}{2018}\)
vi 2018/2019<1
2019/2020<1
2020/2021<1
nen 2018/2019 + 2019/2020 + 2020/2021<1+1+1=3