K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2017

a) \(\frac{1}{3}-\frac{3}{4}-\left(\frac{-3}{5}\right)+\frac{1}{64}-\frac{2}{9}-\frac{1}{36}+\frac{1}{15}\)

=\(\left(\frac{1}{3}+\frac{3}{5}+\frac{1}{15}\right)-\left(\frac{3}{4}+\frac{2}{9}+\frac{1}{36}\right)+\frac{1}{64} \)

=\(\frac{5+9+1}{15}-\frac{27+8+1}{36}+\frac{1}{64}\)

\(1+1+\frac{1}{64}=2\frac{1}{64}\)

27 tháng 8 2017

1^3-3^5-(-3^5)+1^64-2^9-1^36+1^15

=1+(-3^5+3^5)+1-2^9-1+1

=2-2^9

=-510

14 tháng 6 2015

hơi khó anh mai ơi !

29 tháng 3 2016

hơi bị khó... chờ mình ghi lại để hỏi cô!!!

15 tháng 9 2016

A = ( 4/4 + 2/3 ) - ( 51/3 - 6/5 ) - ( 6 - 7/4 + 3/2 )

Sau đó quy đồng rồi trừ cả là đc 

B tương tự 

C=13/15 

D cx thế . Bạn tự vận dụng đi . Xl vì ko giải đc . Mik đang gấp

2 tháng 10 2021
Cbhjjkmngh
13 tháng 7 2023

a) \(\dfrac{1}{3}+\dfrac{3}{5}+\dfrac{1}{15}-\dfrac{3}{4}-\dfrac{2}{9}-\dfrac{1}{36}+\dfrac{1}{72}\)

\(=\dfrac{5+9+1}{15}-\dfrac{27+8+1}{36}+\dfrac{1}{72}=1-1+\dfrac{1}{72}=\dfrac{1}{72}\)

b) \(=\dfrac{1}{5}-\dfrac{1}{5}-\dfrac{3}{7}+\dfrac{3}{7}+\dfrac{5}{9}-\dfrac{5}{9}-\dfrac{1}{11}+\dfrac{1}{11}+\dfrac{7}{13}-\dfrac{7}{13}-\dfrac{9}{16}\)

\(=\dfrac{9}{16}\)

\(B=\frac{1}{3}-\frac{3}{4}+0,6+\frac{1}{64}-\frac{2}{9}-\frac{1}{36}+\frac{1}{15}\)

\(\Rightarrow B=\frac{3}{15}-\frac{48}{64}+\frac{9}{15}+\frac{1}{64}-\frac{8}{36}-\frac{1}{36}+\frac{1}{15}\)

\(\Rightarrow B=\frac{3}{15}+\frac{9}{15}+\frac{1}{15}+\left(-\frac{48}{64}+\frac{1}{64}\right)+\left(-\frac{8}{36}-\frac{1}{36}\right)\)

\(\Rightarrow B=\frac{13}{15}-\frac{47}{64}-\frac{1}{4}\)

\(\Rightarrow B=-\frac{113}{960}\)

\(C=0\)

\(D=\frac{1}{99}-\frac{1}{99.98}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(\Rightarrow D=\frac{1}{99}-\frac{1}{99}+\frac{1}{98}-\frac{1}{98}+...-\frac{1}{3}+\frac{1}{2}-\frac{1}{2}+1\)

\(\Rightarrow D=1\)

11 tháng 8 2019

D= \(\frac{1}{99}-\frac{1}{99.98}-\frac{1}{98.97}......-\frac{1}{3.2}-\frac{1}{2.1}\)

=\(\frac{1}{99}-\left(\frac{1}{1.2}+\frac{1}{2.3}+.......+\frac{1}{97.98}+\frac{1}{98.99}\right)\)

=\(\frac{1}{99}-\left(1-\frac{1}{2}+\frac{1}{2}-.....-\frac{1}{98}-\frac{1}{99}\right)\)

=\(\frac{1}{99}-\left[1-(\frac{1}{2}-\frac{1}{2}+......+\frac{1}{98}-\frac{1}{99})\right]\)

=\(\frac{1}{99}-\left(1-0-0-.....-0-\frac{1}{99}\right)\)

=\(\frac{1}{99}-1-\frac{1}{99}\)

=1

\(A=\left(\dfrac{1}{3}+\dfrac{3}{5}+\dfrac{1}{15}\right)-\left(\dfrac{3}{4}+\dfrac{2}{9}+\dfrac{1}{36}\right)+\dfrac{1}{64}\)

\(=\dfrac{5+9+1}{15}-\dfrac{27+8+1}{36}+\dfrac{1}{64}\)

=1/64