Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}\)\(<1\)
\(\Rightarrow\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}<1\)
Vậy \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}<1\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}\)
\(=\frac{49}{50}\)
\(\Rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}<1\)
=> \(A=\frac{\left(\frac{49}{1}+\frac{48}{2}+...+\frac{1}{49}\right)}{50}=\frac{49}{50.1}+\frac{48}{50.2}+...+\frac{1}{50.49}\)
=> \(A=\frac{50-1}{50.1}+\frac{50-2}{50.2}+...+\frac{50-49}{50.49}\)
=> \(A=\left(\frac{50}{50.1}+\frac{50}{50.2}+...+\frac{50}{50.49}\right)-\left(\frac{1}{50.1}+\frac{2}{50.2}+...+\frac{49}{50.49}\right)\)
=> \(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{49}\right)-\left(\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\right)\) ( có 49 số 1/50 )
=> \(A=1+\frac{1}{2}+...+\frac{1}{49}-\frac{49}{50}=\left(1-\frac{49}{50}\right)+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{49}\)
=> \(A=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\)
Vậy A không phải là số tự nhiên
\(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\\ A< \frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{50\times51}\\ A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{50}-\frac{1}{51}\\ A< 1-\frac{1}{51}=\frac{49}{51}\\ \Rightarrow A< 2\)
\(A=\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{49^2}+\frac{1}{50^2}.\)
\(\Rightarrow A< \frac{1}{1^2}+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{48.49}+\frac{1}{49.50}\)
\(A< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...-\frac{1}{49}+\frac{1}{50}\)
\(A< 1+1-\frac{1}{50}=2-\frac{1}{50}< 2\)
\(\Rightarrow A< 2\left(đpcm\right)\)
Nếu a chia hết thì cách giải là a chia hết 1.2.....50 suy ra a chia hết cho 2,cho 3,.....,cho 50
suy ra a+2 là hợp số a chia hết 2,2chia hết cho 2
a+3 là hợp số a chia hết cho 3, 3 chia hết cho 3
.....................................................................
a+ 50 là hợp số a chia hết cho 50 , 50 chia hết cho 50