K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2023

a) \(12,4\cdot6\dfrac{1}{4}+\left(-12,4\right)\cdot\left(-2,5\right)^2\)

\(=12,4\cdot\dfrac{25}{4}-12,4\cdot\dfrac{25}{4}=0\)

b) \(32,125-\left(6,325+12,125\right)-\left(37+13,675\right)=32,125-6,325-12,125-37-13,675\)

\(=\left(32,125-12,125\right)-\left(6,325+13,675\right)-37=20-20-37=-37\)

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

\(\begin{array}{l}a)A = 32,125 - (6,325 + 12,125) - (37 + 13,675)\\ = 32,125 - 6,325 - 12,125 - 37 - 13,675\\ = (32,125 - 12,125) + ( - 6,325 - 13,675) - 37\\ = 20 + ( - 20) - 37\\ =  - 37\\b)B = 4,75 + {\left( {\frac{{ - 1}}{2}} \right)^3} + 0,{5^2} - 3.\frac{{ - 3}}{8}\\ = 4,75 + \frac{{ - 1}}{8} + 0,25 + \frac{9}{8}\\ = (4,75 + 0,25) + \left( {\frac{{ - 1}}{8} + \frac{9}{8}} \right)\\ = 5 + \frac{8}{8}\\ = 5 + 1\\ = 6\\c)C = 2021,2345.2020,1234 + 2021,2345.( - 2020,1234)\\ = 2021,2345.[2020,1234 + ( - 2020,1234)]\\ = 2021,2345.0\\ = 0\end{array}\)

a: \(\dfrac{2}{5}+\dfrac{3}{5}:\left(-\dfrac{3}{2}\right)+\dfrac{1}{2}\)

\(=\dfrac{2}{5}+\dfrac{3}{5}\cdot\dfrac{-2}{3}+\dfrac{1}{2}\)

\(=\dfrac{2}{5}-\dfrac{2}{5}+\dfrac{1}{2}=\dfrac{1}{2}\)

b: \(2,5-\left(-\dfrac{5}{6}\right)^0+\left(-\dfrac{1}{6}\right)^2\cdot\left(-3\right)\)

\(=\dfrac{5}{2}-1+\dfrac{1}{36}\cdot\left(-3\right)\)

\(=\dfrac{3}{2}-\dfrac{1}{12}=\dfrac{18}{12}-\dfrac{1}{12}=\dfrac{17}{12}\)

Bài 2:

a: =>x^2=60

=>\(x=\pm2\sqrt{15}\)

b: =>2^2x+3=2^3x

=>3x=2x+3

=>x=3

c: \(\Leftrightarrow\sqrt{\dfrac{1}{2}x-2}\cdot\dfrac{1}{2}=1\)

\(\Leftrightarrow\sqrt{\dfrac{1}{2}x-2}=2\)

=>1/2x-2=4

=>1/2x=6

=>x=12

8 tháng 9 2017

\(A=\dfrac{\left(1+17\right).\left(1+\dfrac{17}{2}\right)..........\left(1+\dfrac{17}{19}\right)}{\left(1+19\right).\left(1+\dfrac{19}{2}\right)..........\left(1+\dfrac{19}{17}\right)}\)

\(=\dfrac{18.\dfrac{19}{2}.............\dfrac{36}{19}}{20.\dfrac{21}{2}..........\dfrac{36}{17}}\)

\(=\dfrac{18.19.20.......36}{1.2.3...19}:\dfrac{20.21.....36}{1.2.3...17}\)

\(=\dfrac{1.2.3......36}{1.2.....36}\)

\(=1\)

17 tháng 7 2017

a) \(\left|2,5-x\right|-1,3=0\)

th1: \(2,5-x\ge0\Leftrightarrow x\le2,5\)

\(\Rightarrow\left|2,5-x\right|-1,3=0\Leftrightarrow2,5-x-1,3=0\Leftrightarrow x=1,2\left(tmđk\right)\)

th2: \(2,5-x< 0\Leftrightarrow x>2,5\)

\(\Rightarrow\left|2,5-x\right|-1,3=0\Leftrightarrow x-2,5-1,3=0\Leftrightarrow x=3,8\left(tmđk\right)\)

vậy \(x=1,2;x=3,8\)

b) \(1,6.\left|x-0,2\right|=0\Leftrightarrow\left|x-0,2\right|=0\Leftrightarrow x-0,2=0\Leftrightarrow x=0,2\) vậy \(x=0,2\)

c) \(\left|\dfrac{1}{3}-x\right|-\left|\dfrac{-3}{7}\right|=0\)

th1: \(\dfrac{1}{3}-x\ge0\Leftrightarrow x\le\dfrac{1}{3}\)

\(\Rightarrow\left|\dfrac{1}{3}-x\right|-\left|\dfrac{-3}{7}\right|=0\Leftrightarrow\dfrac{1}{3}-x-\dfrac{3}{7}=0\Leftrightarrow x=\dfrac{-2}{21}\left(tmđk\right)\)

th2: \(\dfrac{1}{3}-x< 0\Leftrightarrow x>\dfrac{1}{3}\)

\(\Rightarrow\left|\dfrac{1}{3}-x\right|-\left|\dfrac{-3}{7}\right|=0\Leftrightarrow x-\dfrac{1}{3}-\dfrac{3}{7}=0\Leftrightarrow x=\dfrac{16}{21}\left(tmđk\right)\)

vậy \(x=\dfrac{-2}{21};x=\dfrac{16}{21}\)

d) \(\left|x+\dfrac{4}{15}\right|-\left|-3,75\right|=-\left|-2,15\right|\)

th1: \(x+\dfrac{4}{15}\ge0\Leftrightarrow x\ge\dfrac{-4}{15}\)

\(\Rightarrow\left|x+\dfrac{4}{15}\right|-\left|-3,75\right|=-\left|-2,15\right|\Leftrightarrow x+\dfrac{4}{15}-3,75=-2,15\)

\(\Leftrightarrow x=\dfrac{4}{3}\left(tmđk\right)\)

th2: \(x+\dfrac{4}{15}< 0\Leftrightarrow x< \dfrac{-4}{15}\)

\(\Rightarrow\left|x+\dfrac{4}{15}\right|-\left|-3,75\right|=-\left|-2,15\right|\Leftrightarrow-x-\dfrac{4}{15}-3,75=-2,15\)

\(\Leftrightarrow x=\dfrac{-28}{15}\left(tmđk\right)\)

vậy \(x=\dfrac{4}{3};x=\dfrac{-28}{15}\)

e) ta có : \(\left|x-1,5\right|\ge0\forall x\)\(\left|2,5-x\right|\ge0\forall x\)

\(\Rightarrow\left|x-1,5\right|+\left|2,5-x\right|=0\Leftrightarrow\left\{{}\begin{matrix}x-1,5=0\\2,5-x=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1,5\\x=2,5\end{matrix}\right.\) 2 giá trị này khác nhau \(\Rightarrow\) phương trình vô nghiệm

a: \(=\dfrac{2^{19}\cdot3^9+3^9\cdot5\cdot2^{18}}{2^{19}\cdot3^9+2^{10}}\)

\(=\dfrac{3^9\cdot2^{18}\cdot\left(2+5\right)}{2^{10}\cdot\left(2^9\cdot3^9+1\right)}=\dfrac{3^9\cdot7\cdot2^8}{6^9+1}\)

b: \(=\dfrac{\dfrac{-1}{8}-\dfrac{27}{64}\cdot4}{-2+\dfrac{9}{16}-\dfrac{3}{8}}=\dfrac{-29}{16}:\dfrac{-29}{16}=1\)

6 tháng 12 2017

\(\frac{\left(\frac{2}{3}\right)^3.\left(\frac{-3}{4}\right)^2.\left(-1\right)^5}{\left(\frac{2}{5}\right)^2.\left(\frac{-5}{12}\right)^3}=\frac{\frac{2^3}{3^3}.\frac{3^2}{4^2}.\left(-1\right)}{\frac{2^2}{5^2}.\frac{\left(-5\right)^3}{12^3}}=\)\(\frac{\frac{1}{6}.\left(-1\right)}{\frac{2^2}{5^2}.\frac{5^3}{2^6.3^3}.\left(-1\right)}=\frac{\frac{1}{2.3}}{\frac{5}{2^4.3^3}}=\frac{2^3.3^2}{5}=\frac{72}{5}\)

Bài 1:...
Đọc tiếp

Bài 1: Tính

a. \(\left(1+\frac{1}{1\cdot3}\right)\cdot\left(1+\frac{1}{2\cdot4}\right)\cdot\left(1+\frac{1}{3\cdot5}\right)+\left(1+\frac{1}{4\cdot6}\right).....\left(1+\frac{1}{99\cdot101}\right)\)

b. \(\left[\sqrt{0,64}+\sqrt{0,0001}-\sqrt{\left(-0,5\right)^2}\right]\div\left[3\cdot\sqrt{\left(0,04\right)^2}-\sqrt{\left(-2\right)^4}\right]\)

c. \(\frac{5.4^{15}\cdot9^9-4.3^{20}\cdot8^9}{5\cdot2^9\cdot6^{19}-7\cdot2^{29}\cdot27^6}-\frac{2^{19}\cdot6^{15}-7\cdot6^{10}\cdot2^{20}\cdot3^6}{9\cdot6^{19}\cdot2^9-4\cdot3^{17}\cdot2^{26}}+0,\left(6\right)\)

Bài 2: Tìm x, y, z biết :
a. \(\left(x-10\right)^{1+x}=\left(x-10\right)^{x+2009}\left(x\in Z\right)\)

b. \(\left|x-2007\right|+\left|x-2008\right|+\left|y-2009\right|+\left|x-2010\right|=3\left(x,y\in N\right)\) 

c. \(25-y^2=8\left(x-2009\right)^2\left(x,y\in Z\right)\)

d. \(2008\left(x-4\right)^2+2009\left|x^2-16\right|+\left(y+1\right)^2\le0\)

e. \(2x=3y\) ; \(4z=5x\) và \(3y^2-z^2=-33\)

Bài 3: Chứng minh rằng

a. \(1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{2009^2}>\frac{1}{2009}\)

b. \(\left[75\cdot\left(4^{2008}+4^{2007}+4^{2006}+...+4+1\right)+25\right]⋮100\)

Bài 4: 

a. Tìm giá trị nhỏ nhất của biểu thức : \(M=\left(x^2+2\right)+\left|x+y-2009\right|+2005\)

b. So sánh: \(31^{11}\) và \(\left(-17\right)^{14}\)

c. So sánh: \(\left(\frac{9}{11}-0,81\right)^{2012}\) và \(\frac{1}{10^{4024}}\)

1

Bài 1 :\(a,=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}...\frac{100^2}{99.101}\)

           \(=\frac{2.3.4...100}{1.2.3...99}.\frac{2.3.4...100}{3.4...101}\)

          \(=100.\frac{2}{101}=\frac{200}{101}\)

22 tháng 6 2022

a) A=[27(14−13)]:[27(13−25)]=(14−13):(13−25)=114.
b) B=34(15−27−13+27)15(27+13)−13(27+13)=34(15−13)(15−13)(27+13)=11152.

13 tháng 7 2022

a) \mathrm{A}=\left[\dfrac{2}{7}\left(\dfrac{1}{4}-\dfrac{1}{3}\right)\right]:\left[\dfrac{2}{7}\left(\dfrac{1}{3}-\dfrac{2}{5}\right)\right]=\left(\dfrac{1}{4}-\dfrac{1}{3}\right):\left(\dfrac{1}{3}-\dfrac{2}{5}\right)=1 \dfrac{1}{4}.
b) \mathrm{B}=\dfrac{\dfrac{3}{4}\left(\dfrac{1}{5}-\dfrac{2}{7}-\dfrac{1}{3}+\dfrac{2}{7}\right)}{\dfrac{1}{5}\left(\dfrac{2}{7}+\dfrac{1}{3}\right)-\dfrac{1}{3}\left(\dfrac{2}{7}+\dfrac{1}{3}\right)}=\dfrac{\dfrac{3}{4}\left(\dfrac{1}{5}-\dfrac{1}{3}\right)}{\left(\dfrac{1}{5}-\dfrac{1}{3}\right)\left(\dfrac{2}{7}+\dfrac{1}{3}\right)}=1 \dfrac{11}{52}