K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\dfrac{1}{2^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\)

\(=\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+...+\dfrac{1}{25^2}\right)\)

\(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}=1-\dfrac{1}{2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}=\dfrac{1}{2}-\dfrac{1}{3}\)

...

\(\dfrac{1}{25^2}< \dfrac{1}{24\cdot25}=\dfrac{1}{24}-\dfrac{1}{25}\)

Do đó: \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{25^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{24}-\dfrac{1}{25}\)

=>\(1+\dfrac{1}{2^2}+...+\dfrac{1}{25^2}< 1+1-\dfrac{1}{25}< 2\)

=>\(A=\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+...+\dfrac{1}{25^2}\right)< \dfrac{2}{4}=\dfrac{1}{2}\)

10 tháng 8 2016

2A = 1 + 1/2 + 1/22 + 1/23 + ... + 1/248+ 1/249

2A - A = (1 + 1/2 + 1/22 + 1/2+ ... + 1/248 + 1/249) - (1/2 + 1/22 + 1/23 + 1/24 + ... + 1/249 + 1/250)

A = 1 - 1/250

14 tháng 3 2018

ta có:a=1/2+1/4 +...+1/50

a=1/4+1/16+...1/2500=1/...

mà trong hai phân số có cùng tử số,phân số nao có mẫu số lớn hơn thì bé hơn

trong đó 4+16+…+2500 >2

nên a<1/2

24 tháng 6 2020

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\)

Ta có : \(\frac{1}{2^2}=\frac{1}{2\cdot2}< \frac{1}{1\cdot2}\)

\(\frac{1}{3^2}=\frac{1}{3\cdot3}< \frac{1}{2\cdot3}\)

\(\frac{1}{4^2}=\frac{1}{4\cdot4}< \frac{1}{3\cdot4}\)

\(...\)

\(\frac{1}{50^2}=\frac{1}{50\cdot50}< \frac{1}{49\cdot50}\)

=> \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{49\cdot50}\)

=> \(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

=> \(A< 1-\frac{1}{50}=\frac{49}{50}\)( 1 )

Lại có : \(\frac{49}{50}< 1\)( 2 )

Từ ( 1 ) và ( 2 ) => \(A< \frac{49}{50}< 1\)

=> \(A< 1\)

26 tháng 4 2016

tinh 2A ROI RUT GON .ROI LAY 2A tru di A THI RA KET QUA

26 tháng 4 2016

le đinh dat chỉ bậy tính thế thì ai tính ko được mà céc cũng phải mất 1 ngày mứ ra kiểu tính mò nớ đó

13 tháng 3 2017

Ta có :

\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};.......;\frac{1}{50^2}< \frac{1}{49.50}\)

\(\Leftrightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{49.50}\)

\(\Leftrightarrow\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{50^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}< 1\)

\(\Rightarrow3+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{50^2}< 1+3=4\)

Vậy \(3+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{50^2}< 4\)

13 tháng 3 2017

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{50^2}< \frac{1}{49.50}\)

=> \(3+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 3+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

=> \(3+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 3+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

=> \(3+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 3+1-\frac{1}{50}=4-\frac{1}{50}< 4\)

Vậy \(3+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 4\)

17 tháng 8 2016

\(3A=1+\frac{1}{3}+...+\frac{1}{3^{49}}\)

\(3A-A=\left(1+\frac{1}{3}+...+\frac{1}{3^{49}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{50}}\right)\)

\(2A=1-\frac{1}{3^{50}}< 1\)

\(A< \frac{1}{2}\)

25 tháng 7 2016

A = 1 + 2 +22 +...+ 299

2A = 2 + 22 + 2+....+2100

2A - A =2 + 22 + 2+....+2100 -1 + 2 +22 +...+ 299

A = 2100 -1

B = 450 +1

B = 2100 + 1

=> B > A

25 tháng 7 2016

A=1+2+22+...+299

A= 1 + 2100 -1

A = 2100

B=450 + 1 = 2100 + 1

\(\Rightarrow\)A<B

cái A mk suy ra dc nho quy nạp toán học