Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^4\right)^2=\frac{x^{12}}{x^5}\)
\(x^8=x^{12}:x^5\)
\(x^8=x^7\)
=> x8 - x7 = 0
x7.(x-1) = 0
=> x7 = 0=> x = 0
x-1 = 0 => x = 1
KL: x = 1 hoặc x = 0
\(\frac{x}{\left(x^4\right)^2}=\frac{x^{12}}{x^5}\)
=>\(\frac{x}{x^8}=x^7\)
=>\(\frac{1}{x^7}=x^7\)
=>\(1=x^7.x^7\)
=>\(1^{14}=x^{14}\)
=>\(x=1\)
a) Nếu \(x-1\ge0\Rightarrow x\ge1\) thì \(x-1=2x-5\Rightarrow-x=-4\Rightarrow x=4\) (nhận)
Nếu \(x-1< 0\Rightarrow x< 1\) thì \(x-1=-\left(2x-5\right)\Rightarrow3x=6\Rightarrow x=2\) (loại)
Vậy x = 4
b) Nếu \(9-7x\ge0\Rightarrow x\le\frac{9}{7}\) thì \(9-7x=5x-3\Rightarrow-12x=-12\Rightarrow x=1\) (nhận)
Nếu \(9-7x< 0\Rightarrow x>\frac{9}{7}\) thì \(9-7x=-\left(5x-3\right)\Rightarrow-2x=-6\Rightarrow x=3\) (nhận)
Vậy x = 1 hoặc x = 3
c) \(8x-\left|4x+1\right|=x+2\)
\(\Rightarrow7x-2-\left|4x+1\right|=0\Rightarrow7x-2=\left|4x+1\right|\)
Cách giải tương tự hai câu a;b
Câu 1:
\(x^4=16\)
\(\Rightarrow x=2\) hoặc \(x=-2\)
Vậy \(x\in\left\{2;-2\right\}\)
Câu 2:
\(\left(x+5\right)^3=-64\)
\(\Rightarrow\left(x+5\right)^3=\left(-4\right)^3\)
\(\Rightarrow x+5=-4\)
\(\Rightarrow x=-9\)
Vậy \(x=-9\)
Câu 4:
Giải:
Ta có: \(\frac{x}{2}=\frac{y}{-5}\) và \(x-y=-7\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{-7}{7}=-1\)
+) \(\frac{x}{2}=-1\Rightarrow x=-2\)
+) \(\frac{y}{-5}=-1\Rightarrow y=5\)
Vậy cặp số \(\left(x;y\right)\) là \(\left(-2;5\right)\)
Câu 5:
Giải:
Đổi 10km = 10000m
Gọi 10000m dây đồng nặng x ( kg )
Vì số dây đồng tỉ lệ thuận với số cân nặng nên ta có:
\(\frac{5}{43}=\frac{10000}{x}\)
\(\Rightarrow x=\frac{10000.43}{5}=86000\left(kg\right)\)
Vậy 1km dây đồng nặng 86000 kg
Câu 6:
Giải:
Gọi số học sinh giỏi, khá , trung bình của khối 7 là a, b, c \(\left(a;b;c\in N\right)\)
Ta có: \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\) và \(c+b-a=180\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{c+b-a}{3+5-2}=\frac{180}{6}=30\)
+) \(\frac{a}{2}=30\Rightarrow a=60\)
+) \(\frac{b}{3}=30\Rightarrow b=90\)
+) \(\frac{c}{5}=30\Rightarrow c=150\)
Vậy số học sinh giỏi là 60 học sinh
số học sinh khá là 90 học sinh
số học sinh trung bình là 150 học sinh
Câu 7:
a) Ta có: \(y=f\left(x\right)=x^2-8\)
\(f\left(3\right)=3^2-8=9-8=1\)
\(f\left(-2\right)=\left(-2\right)^2-8=4-8=-4\)
b) Khi y = 17
\(\Rightarrow17=x^2-8\)
\(\Rightarrow x^2=25\)
\(\Rightarrow x=5\) hoặc \(x=-5\)
Vậy \(x\in\left\{5;-5\right\}\)
a) Ta có: \(A=5xy-y^2+xy+4xy+3x-2y\)
\(=10xy-y^2+3x-2y\)
b) Ta có: \(\left(-\frac{1}{2}xy^2\right)\cdot\left(\frac{2}{3}x^3\right)\)
\(=\frac{-1}{3}x^4y^2\)(*)
Thay x=2 và \(y=\frac{1}{4}\) vào biểu thức (*), ta được:
\(\frac{-1}{3}\cdot2^4\cdot\left(\frac{1}{4}\right)^2\)
\(=\frac{-1}{3}\cdot16\cdot\frac{1}{16}=\frac{-1}{3}\)
Vậy: \(-\frac{1}{3}\) là giá trị của biểu thức \(\left(-\frac{1}{2}xy^2\right)\cdot\left(\frac{2}{3}x^3\right)\) tại x=2 và \(y=\frac{1}{4}\)
\(\frac{x}{y}=\frac{9}{7}\Rightarrow\frac{x}{9}=\frac{y}{7}\)
\(\frac{y}{z}=\frac{7}{3}\Rightarrow\frac{y}{7}=\frac{z}{3}\)
\(\Rightarrow\frac{x}{9}=\frac{y}{7}=\frac{z}{3}=\frac{x-y+z}{9-7+3}=\frac{-15}{5}=-3\)
\(\Rightarrow\left\{\begin{matrix}x=9.\left(-3\right)=-27\\y=7.\left(-3\right)=-21\\z=3.\left(-3\right)=-9\end{matrix}\right.\)
?????????????????????????
Thu gọn rồi tính giá trị của biểu thức sau A tại x=2 và y=-1