Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{35}+\dfrac{1}{63}+\dfrac{1}{99}+\dfrac{1}{143}\)
\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+\dfrac{1}{9.10}+\dfrac{1}{143}\)
\(A=\dfrac{1}{2}.\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\right)+\dfrac{1}{143}\)
\(A=\dfrac{1}{2}.\left(1-\dfrac{1}{100}\right)+\dfrac{1}{143}=\dfrac{1}{2}.\dfrac{99}{100}+\dfrac{1}{143}=\dfrac{99}{200}+\dfrac{1}{143}=\dfrac{99.143+200.1}{200.143}=\dfrac{14157+200}{28600}=\dfrac{14357}{28600}\)
b) \(x+\left(x+1\right)+\left(x+2\right)+...+\left(x+99\right)=14950\)
\(\Rightarrow x+x+...+x+\left(1+2+...+99\right)=14950\)
\(\Rightarrow100x+\left(\left(99+1\right):2\right).99:2=14950\)
\(\Rightarrow100x+2475=14950\Rightarrow100x=12475\Rightarrow x=\dfrac{12475}{100}=\dfrac{499}{4}\)
nhìn công thức đây này \(\sqrt[]{\sqrt{ }\hept{\begin{cases}\\\end{cases}}\frac{ }{ }^{ }_{ }\hept{\begin{cases}\\\\\end{cases}}\hept{\begin{cases}\\\\\end{cases}}\hept{\begin{cases}\\\\\end{cases}}\hept{\begin{cases}\\\end{cases}}\orbr{\begin{cases}\\\end{cases}}}\) xong rồi đó không cần cảm ơn
ta có
\(\frac{1}{15}=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}\right)\)
\(\frac{1}{35}=\frac{1}{2}\left(\frac{1}{5}-\frac{1}{7}\right)\)
\(\frac{1}{63}=\frac{1}{2}\left(\frac{1}{7}-\frac{1}{9}\right)\)
......................................
\(\frac{1}{143}=\frac{1}{2}\left(\frac{1}{11}-\frac{1}{13}\right)\)
Cộng hết lại: \(\frac{1}{2}\left(\frac{1}{3}-\frac{1}{13}\right)=\frac{1}{2}.\frac{10}{39}=\frac{5}{39}\)
B = \(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}\)
\(\Rightarrow B=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}\)
\(\Rightarrow B=\frac{1.2}{3.5.2}+\frac{1.2}{5.7.2}+\frac{1.2}{7.9.2}+\frac{1.2}{9.11.2}+\frac{1.2}{11.13.2}\)
\(\Rightarrow B=\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\right)\)
\(\Rightarrow B=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)
\(\Rightarrow B=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{13}\right)\)
\(\Rightarrow B=\frac{1}{2}.\frac{10}{39}\)
\(\Rightarrow B=\frac{5}{39}\)
Vậy \(B=\frac{5}{39}\)
P=1/3+1/15+1/35+1/63+1/99
=1:3+1:15+1:35+1:63+1:99
=1:(3+15+35+63+99)
=1:215
=1/215
Vậy:P=1/215
B = 1/4 + 1/15 + 1/35 + 1/63 + 1/99 + 1/143 + 1/195
= 1/4 + 1/(3.5) + 1/(5.7) + 1/(7.9) + 1/(9.11) + 1/(11.13) + 1/(13.15)
= 1/4 + 1/2.(1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + 1/9 - 1/11 + 1/11 - 1/13 + 1/13 - 1/15)
= 1/4 + 1/2.(1/3 - 1/15)
= 1/4 + 1/2 . 4/15
= 1/4 + 2/15
= 23/60
Gọi dãy là A ta có :
A = 1/3.5 + 1/5.7 + 1/7.9 + 1/9.11 + 1/11.13
A = 1/2 . ( 2/3.5 + 2/5.7 + 2/7.9 + 2/9.11 + 2/11.13 )
A = 1/2 . ( 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + 1/9 - 1/11 + 1/11 - 1/13 )
A = 1/2 . ( 1/3 - 1/13 )
A = 1/2 . 10/39
A = 5/39
\(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}\)
=\(\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\right)\)
=\(\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)
=\(\frac{1}{2}\left(\frac{1}{3}-\frac{1}{13}\right)\)
=\(\frac{1}{2}.\frac{10}{39}\)
=\(\frac{5}{39}\)
1/15+1/35+1/63+1/99+1/143
=1/2x(1/15+1/35+1/63+1/99+1/143)
=1/2x(2/3x5+2/5x7+2/7x9+2/9x11+2/11x13)
=1/2x(1/3-1/5+1/7-1/9+1/9-1/11+1/11-1/13)
=1/2x(1/3-1/13)
=1/2x10/39
=5/39
A=1/1.3 + 1/3.5 + 1/5.7 + 1/7.9 + 1/9.11 + 1/11.13 + 1/13.15
A=1/1 - 1/3 +1/3 - 1/5 +1/5 -1/7+......+1/13 - 1/15
A=1 - 1/15
A=1/14
\(A=\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+...+\frac{1}{9999}\)
\(A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+...+\frac{1}{99.101}\)
\(A=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{101}\right)\)
\(A=\frac{1}{2}.\frac{98}{303}\)
\(A=\frac{49}{303}\)
A= \(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\)
2A=\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\)
2A=\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\)
2A=\(\frac{1}{3}-\frac{1}{101}\)
2A=\(\frac{98}{303}\)
A=\(\frac{98}{303}.\frac{1}{2}\)
A=\(\frac{49}{303}\)
Chúc bạn học tốt!
\(A=\frac{4}{33}\)
\(A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+....+\frac{1}{9.11}\)
\(2A=\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{9.11}\)(tắt 1 bước nha)
\(2A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{9}-\frac{1}{11}\)
\(2A=\frac{1}{3}-\frac{1}{11}\)
\(2A=\frac{8}{33}\)
\(\Rightarrow A=\frac{4}{33}\)
Vậy A=_____________