K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\left(1^1+2^2+3^3+...+2022^{2022}\right)^{2023}\cdot\left(8^2-576:3^2\right)^{2024}\)

\(=\left(1^1+2^2+3^3+...+2022^{2022}\right)^{2023}\cdot\left(64-576:9\right)^{2024}\)

\(=\left(1^1+2^2+3^3+...+2022^{2022}\right)^{2023}\cdot\left(64-64\right)^{2024}\)

=0

Đúng 

 

26 tháng 3 2023

\(\left(1^1+2^2+3^3+4^4+...+2022^{2022}\right)\left(8^2-576:3^2\right)\)

\(=\left(1^1+2^2+3^3+4^4+...+2022^{2022}\right)\left(64-576:3^2\right)\)

\(=\left(1^1+2^2+3^3+4^4+...+2022^{2022}\right)\left(64-64\right)\)

\(=\left(1^1+2^2+3^3+4^4+2022^{2022}\right).0\)

\(=0\)

26 tháng 3 2023

Ta có :                  

                82 - 576 : 32

= 64 - 576 : 9

= 64 - 64

=  0

 (11 + 22 + 33 + 44 +...+ 20222022) . 0

= 0           

11 tháng 8 2021

1-2+3-4+...+2021-2022+2023

=(1-2)+(3-4)+...+(2021-2022)+2023

=(-1)+(-1)+(-1)+...+(-1)+2023

=(-1011)+2023

=1012

11 tháng 8 2021

Thanks

 

26 tháng 4 2022
Miug
26 tháng 11 2023

a:

Sửa đề: \(S=1-3+5-7+...+2021-2023+2025\)

Từ 1 đến 2025 sẽ có:

\(\dfrac{2025-1}{2}+1=\dfrac{2024}{2}+1=1013\left(số\right)\)

Ta có: 1-3=5-7=...=2021-2023=-2

=>Sẽ có \(\dfrac{1013-1}{2}=\dfrac{1012}{2}=506\) cặp có tổng là -2 trong dãy số này

=>\(S=506\cdot\left(-2\right)+2025=2025-1012=1013\)

b: \(S=1+2-3-4+5+6-7-8+...+2021+2022-2023-2024\)

Từ 1 đến 2024 là: \(\dfrac{\left(2024-1\right)}{1}+1=2024\left(số\right)\)

Ta có: 1+2-3-4=5+6-7-8=...=2021+2022-2023-2024=-4

=>Sẽ có \(\dfrac{2024}{4}=506\) cặp có tổng là -4 trong dãy số này

=>\(S=506\cdot\left(-4\right)=-2024\)

26 tháng 1

\(A=\dfrac{2023^{2022+2}}{2023^{2022-1}}=2023^{2024-2021}=2023^3\\ B=\dfrac{2023^{2022}}{2023^{2022-3}}=2023^3\\ \Rightarrow A=B\left(=2023^3\right)\)

14 tháng 3 2023

A>B

14 tháng 3 2023

bạn có thể giải chi tiết được không ạ?

 

23 tháng 3 2023

P=[(1-2)+(-3+4)+(5-6)+(-7+8)+...+(993-994)+(-995+996)]+997

P=[(-1)+1+(-1)+1+...+(-1)+1+(-1)+1]+997

P= 0 +0 +...+ 0 +997

P=997

28 tháng 7 2023

\(C=\dfrac{2^{2024}-3}{2^{2023}-1}=\dfrac{2.2^{2023}-2-1}{2^{2023}-1}=\dfrac{2\left(2^{2023}-1\right)-1}{2^{2023}-1}=2-\dfrac{1}{2^{2023}-1}\)

\(D=\dfrac{2^{2023}-3}{2^{2022}-1}=\dfrac{2.2^{2022}-2-1}{2^{2022}-1}=\dfrac{2\left(2^{2022}-1\right)-1}{2^{2022}-1}=2-\dfrac{1}{2^{2022}-1}\)

Ta có

\(2^{2023}>2^{2022}\Rightarrow2^{2023}-1>2^{2022}-1\)

\(\Rightarrow\dfrac{1}{2^{2023}-1}< \dfrac{1}{2^{2022}-1}\Rightarrow2-\dfrac{1}{2^{2023}-1}>2-\dfrac{1}{2^{2022}-1}\)

\(\Rightarrow C>D\)

 

12 tháng 3 2023

\(8A=\dfrac{8^{2022}+16}{8^{2022}+2}=1+\dfrac{14}{8^{2022}+2}\)

\(8B=\dfrac{8^{2024}+16}{8^{2024}+2}=1+\dfrac{14}{8^{2024}+2}\)

Vì \(\dfrac{14}{8^{2022}+2}>\dfrac{14}{8^{2024}+2}\)

=> 8A>8B

=> A>B

12 tháng 3 2023

thanks

 

7 tháng 10 2021

a) 2021 + 2022 + 2023 + 2024 + 2025 + 2026 + 2027 + 2028 + 2029

= (2021 + 2029) + (2022 + 2028) + (2023 + 2027) + (2024 + 2026) + 2025

= 4050 + 4050 + 4050 + 4050 + 2025

= 4050.4 + 2025

= 16 200 + 2025 

= 18 225

7 tháng 10 2021

b)

30.40.50.60 = 3.10.4.10.5.10.6.10 = 3.4.5.6.10000 = 3.20.6.10000 = 3.2.6.10.10000 = 36.100000 = 3600000