\(\frac{1}{2}\) - \(\frac{1}{4}\) - 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2016

Ta có: 

1/2=1—1/2

1/4=1/2—1/4

…………

1/1024—1/2048=1/2048

»» ......bạn tự làm nốt nhé

20 tháng 9 2019

e) \(\frac{1}{7}.\frac{-3}{8}+\frac{-13}{8}.\frac{1}{7}\)

\(=\frac{1}{7}.\left[\left(-\frac{3}{8}\right)+\left(-\frac{13}{8}\right)\right]\)

\(=\frac{1}{7}.\left(-2\right)\)

\(=-\frac{2}{7}.\)

Chúc bạn học tốt!

a) Ta có: \(\frac{3}{8}-\frac{1}{5}+\frac{3}{40}\)

\(=\frac{15}{40}-\frac{8}{40}+\frac{3}{40}\)

\(=\frac{10}{40}=\frac{1}{4}\)

b) Ta có: \(\frac{21}{4}\cdot\frac{3}{8}+\frac{43}{4}\cdot\frac{3}{8}-4\cdot\frac{1}{2}\)

\(=\frac{3}{8}\left(\frac{21}{4}+\frac{43}{4}\right)-2\)

\(=\frac{3}{8}\cdot16-2\)

\(=6-2=4\)

c) Ta có: \(\frac{-5}{9}+\frac{7}{15}+\frac{-2}{11}+\frac{4}{-9}+\frac{8}{15}\)

\(=\left(\frac{-5}{9}+\frac{-4}{9}\right)+\left(\frac{7}{15}+\frac{8}{15}\right)+\frac{-2}{11}\)

\(=-1+1+\frac{-2}{11}\)

\(=\frac{-2}{11}\)

d) Ta có: \(125\%\cdot\left(\frac{-1}{2}\right)^2:\left(1\frac{5}{6}-1.5\right)+2016^0\)

\(=\frac{5}{4}\cdot\frac{1}{4}:\left(\frac{11}{6}-\frac{3}{2}\right)+1\)

\(=\frac{5}{16}\cdot3+1\)

\(=\frac{15}{16}+\frac{16}{16}=\frac{31}{16}\)

21 tháng 6 2020

Nhầm r ha :))

12 tháng 8 2020

thiếu 1/10 kìa cha

12 tháng 8 2020

uk, tui bt rùi

31 tháng 5 2016

1.

a.

\(\frac{1}{3}+\left(\frac{1}{5}-\frac{1}{7}\right)\)

\(=\frac{1}{3}+\frac{1}{5}-\frac{1}{7}\)

\(=\frac{35-21-15}{105}\)

\(=-\frac{1}{105}\)

b.

\(\frac{3}{5}-\left(\frac{3}{4}-\frac{1}{2}\right)\)

\(=\frac{3}{5}-\frac{3}{4}+\frac{1}{2}\)

\(=\frac{12-15+10}{20}\)

\(=\frac{7}{20}\)

c.

\(\frac{4}{7}-\left(\frac{2}{5}+\frac{1}{3}\right)\)

\(=\frac{4}{7}-\frac{2}{5}-\frac{1}{3}\)

\(=\frac{60-42-35}{105}\)

\(=-\frac{17}{105}\)

2.

a.

\(S=-\frac{1}{1\times2}-\frac{1}{2\times3}-\frac{1}{3\times4}-...-\frac{1}{\left(n-1\right)\times n}\)

\(S=-\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{\left(n-1\right)\times n}\right)\)

\(S=-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\right)\)

\(S=-\left(1-\frac{1}{n}\right)\)

\(S=-1+\frac{1}{n}\)

b.

\(S=-\frac{4}{1\times5}-\frac{4}{5\times9}-\frac{4}{9\times13}-...-\frac{4}{\left(n-4\right)\times n}\)

\(S=-\left(\frac{4}{1\times5}+\frac{4}{5\times9}+\frac{4}{9\times13}+...+\frac{4}{\left(n-4\right)\times n}\right)\)

\(S=-\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{n-4}-\frac{1}{n}\right)\)

\(S=-\left(1-\frac{1}{n}\right)\)

\(S=-1+\frac{1}{n}\)

Chúc bạn học tốtok

 

4 tháng 8 2019

a) \(\sqrt{\frac{4}{81}}:\sqrt{\frac{25}{81}}-1\frac{2}{5}\)

\(=\frac{2}{9}:\frac{5}{9}-\frac{7}{5}\)

\(=\frac{2}{5}-\frac{7}{5}\)

\(=-1.\)

b) \(\sqrt{36}.\sqrt{\frac{25}{16}}+\frac{1}{4}\)

\(=6.\frac{5}{4}+\frac{1}{4}\)

\(=\frac{15}{2}+\frac{1}{4}\)

\(=\frac{31}{4}.\)

c) \(1\frac{1}{2}+\frac{4}{7}:\left(-\frac{8}{9}\right)\)

\(=\frac{3}{2}+\frac{4}{7}:\left(-\frac{8}{9}\right)\)

\(=\frac{3}{2}+\left(-\frac{9}{14}\right)\)

\(=\frac{6}{7}.\)

d) \(1,17-0,4.\left(\frac{1}{2}\right)^2-\frac{1}{-5}\)

\(=\frac{117}{100}-\frac{2}{5}.\frac{1}{4}-\left(-\frac{1}{5}\right)\)

\(=\frac{117}{100}-\frac{1}{10}+\frac{1}{5}\)

\(=\frac{107}{100}+\frac{1}{5}\)

\(=\frac{127}{100}.\)

Chúc bạn học tốt!

4 tháng 8 2019

a, \(\frac{4}{81}:\sqrt{\frac{25}{81}-1\frac{2}{5}}\)

\(\Rightarrow\frac{4}{81}:\frac{5}{9}-\frac{7}{5}\)

\(\Rightarrow\frac{4}{81}.\frac{9}{5}-\frac{7}{5}\)

\(\Rightarrow\frac{4}{9}.\frac{1}{5}-\frac{7}{5}\)

\(\Rightarrow\frac{-59}{45}\)

b,\(\sqrt{36}.\sqrt{\frac{25}{16}+\frac{1}{4}}\)

\(\Rightarrow6.\frac{5}{4}+\frac{1}{4}\)

\(\Rightarrow\frac{15}{2}+\frac{1}{4}\)

\(\Rightarrow\frac{31}{4}\)

c,\(1\frac{1}{2}+\frac{4}{7}:\frac{-8}{9}\)

\(\Rightarrow\frac{3}{2}-\frac{4}{7}.\frac{-8}{9}\)

\(\Rightarrow\frac{3}{2}-\frac{9}{14}\)

\(\Rightarrow\frac{6}{7}\)

d, \(1,17-\left(0,4.\frac{1}{2}\right)^2-\frac{1}{5}\)

\(\Rightarrow\frac{117}{100}-\left(\frac{1}{5}\right)^2-\frac{1}{5}\)

\(\Rightarrow\frac{117}{100}-\frac{1}{25}-\frac{1}{5}\)

\(\Rightarrow\frac{93}{100}\)

Bài 2:

a) \(x:\left(\frac{2}{9}-\frac{1}{5}\right)=\frac{8}{16}\)

\(\Leftrightarrow x:\frac{1}{45}=\frac{1}{2}\)

\(\Leftrightarrow x=\frac{1}{2}:\frac{1}{45}=\frac{45}{2}\)

b) \(\left(2x-1\right).\left(2x+3\right)=0\)

\(\)\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\2x+3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=1\\2x=-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{3}{2}\end{matrix}\right.\)

c) \(\frac{4-3x}{2x+5}=0\Leftrightarrow4-3x=0\)

\(\Leftrightarrow3x=4\Rightarrow x=\frac{4}{3}\)

d) \(\left(x-2\right).\left(x+\frac{2}{3}\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2>0\\x+\frac{3}{2}>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-2< 0\\x+\frac{3}{2}< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>2\\x>-\frac{3}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\x< -\frac{3}{2}\end{matrix}\right.\end{matrix}\right.\)

28 tháng 7 2019

Bài 2:

a) \(x:\left(\frac{2}{9}-\frac{1}{5}\right)=\frac{8}{16}\)

=> \(x:\frac{1}{45}=\frac{1}{2}\)

=> \(x=\frac{1}{2}.\frac{1}{45}\)

=> \(x=\frac{1}{90}\)

Vậy \(x=\frac{1}{90}.\)

b) \(\left(2x-1\right).\left(2x+3\right)=0\)

=> \(\left\{{}\begin{matrix}2x-1=0\\2x+3=0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}2x=0+1=1\\2x=0-3=-3\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=1:2\\x=\left(-3\right):2\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{3}{2}\end{matrix}\right.\)

Vậy \(x\in\left\{\frac{1}{2};-\frac{3}{2}\right\}.\)

Mình chỉ làm được thế thôi nhé, mong bạn thông cảm.

Chúc bạn học tốt!

24 tháng 6 2019

a, -1/24 - [1/4 - (1/2 - 7/8)]

= -1/24 - [1/4 - 1/2 + 7/8]

= -1/24 - 1/4 + 1/2 - 7/8

= -1/24 - 6/24 + 12/14 - 21/24

= -16/24 = -2/3

24 tháng 6 2019

Yêu cầu tính hả ?

a ) \(\frac{-1}{24}-\left[\frac{1}{4}-\left(\frac{1}{2}-\frac{7}{8}\right)\right]\)

\(=\frac{-1}{24}-\left[\frac{1}{4}-\left(-\frac{3}{8}\right)\right]\)

\(=\frac{-1}{24}-\left[\frac{1}{4}+\frac{3}{8}\right]\)

\(=\frac{-1}{24}-\frac{5}{8}\)

\(=\frac{-2}{3}\)

b ) \(\left[\frac{5}{7}-\frac{7}{5}\right]-\left[\frac{1}{2}-\left(-\frac{2}{7}-\frac{1}{10}\right)\right]\)

\(=\left[\frac{5}{7}-\frac{7}{5}\right]-\left[\frac{1}{2}-\left(-\frac{27}{10}\right)\right]\)

\(=\left[\frac{5}{7}-\frac{7}{5}\right]-\left[\frac{1}{2}+\frac{27}{10}\right]\)

\(=\frac{-24}{35}-\frac{16}{5}\)

\(=\frac{-136}{35}\)

3 tháng 8 2018

\(2A=1+\frac{1}{2}+...+\frac{1}{2^{49}}\)

\(2A-A=1-\frac{1}{2^{50}}\)

\(A=1-\frac{1}{2^{50}}\)=> A bé hơn 1

tương tự nha

3 tháng 8 2018

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\)

\(2A=2.\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\right)\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{48}}+\frac{1}{2^{49}}\)

\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{48}}+\frac{1}{2^{49}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\right)\)

\(A=1-\frac{1}{2^{50}}< 1\)