Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(3.5^2+15.2^2-26\div2\)
= 3.25 + 15.4 - 13
= 75 + 60 - 13
= 135 - 13
= 122
b) \(5^3.2-100\div4+2^3.5\)
= 125.2 - 25 + 8.5
= 250 - 25 + 40
= 225 + 40
= 265
c)\(6^2\div9+50.2-3^3.33\)
= 36 : 9 + 100 - 9.33
= 4 + 100 - 297
= 104 - 297
= -193
d)\(3^2.5+2^3.10-81\div3\)
= 9.5 + 8.10 - 27
= 45 + 80 - 27
= 125 - 27
= 98
e) \(5^{13}\div5^{10}-25.2^2\)
= 53 - 25.4
= 125 - 100
= 25
f) \(20\div2^2+5^9\div5^8\)
= 20 : 4 + 5
= 5 + 5
= 10
a.
$S=1+2+2^2+2^3+...+2^{2017}$
$2S=2+2^2+2^3+2^4+...+2^{2018}$
$\Rightarrow 2S-S=(2+2^2+2^3+2^4+...+2^{2018}) - (1+2+2^2+2^3+...+2^{2017})$
$\Rightarrow S=2^{2018}-1$
b.
$S=3+3^2+3^3+...+3^{2017}$
$3S=3^2+3^3+3^4+...+3^{2018}$
$\Rightarrow 3S-S=(3^2+3^3+3^4+...+3^{2018})-(3+3^2+3^3+...+3^{2017})$
$\Rightarrow 2S=3^{2018}-3$
$\Rightarrow S=\frac{3^{2018}-3}{2}$
Câu c, d bạn làm tương tự a,b.
c. Nhân S với 4. Kết quả: $S=\frac{4^{2018}-4}{3}$
d. Nhân S với 5. Kết quả: $S=\frac{5^{2018}-5}{4}$
a) \(A=1+2+2^2+...+2^{50}\)
\(\Rightarrow2A=2+2^2+...+2^{51}\)
\(\Rightarrow A=2A-A=2+2^2+...+2^{51}-1-2-2^2-...-2^{50}=2^{51}-1\)
b) \(B=1+3+3^2+...+3^{100}\)
\(\Rightarrow3B=3+3^2+...+3^{101}\)
\(\Rightarrow2B=3B-B=3+3^2+...+3^{101}-1-3-3^2-...-3^{100}=3^{101}-1\)
\(\Rightarrow B=\dfrac{3^{101}-1}{2}\)
c) \(C=5+5^2+...+5^{30}\)
\(\Rightarrow5C=5^2+5^3+...+5^{31}\)
\(\Rightarrow4C=5C-C=5^2+5^3+...+5^{31}-5-5^2-...-5^{30}=5^{31}-5\)
\(\Rightarrow C=\dfrac{5^{31}-5}{4}\)
d) \(D=2^{100}-2^{99}+2^{98}-...+2^2-2\)
\(\Rightarrow2D=2^{101}-2^{100}+2^{99}-...+2^3-2^2\)
\(\Rightarrow3D=2D+D=2^{101}-2^{100}+2^{99}-...+2^3-2^2+2^{100}-2^{99}+...+2^2-2=2^{101}-2\)
\(\Rightarrow D=\dfrac{2^{101}-2}{3}\)
a) 7(x - 5) + 2 = 51
\(\Leftrightarrow\) 7(x - 5) = 51 - 2
\(\Leftrightarrow\) 7(x - 5) = 49
\(\Leftrightarrow\) x - 5 = 49 : 7
\(\Leftrightarrow\) x - 5 = 7
\(\Leftrightarrow\) x = 7 + 5
\(\Leftrightarrow\) x = 12.
Vậy x = 12.
k) 2412 : (3x + 147) = |-38| + (-26)
\(\Leftrightarrow\) 2412 : (3x + 147)= 38 + (-26)
\(\Leftrightarrow\) 2412 : (3x + 147)= 12
\(\Leftrightarrow\) 3x + 147 = 2412 : 12
\(\Leftrightarrow\) 3x + 147 = 201
\(\Leftrightarrow\) 3x = 201 - 147
\(\Leftrightarrow\) 3x = 54
\(\Leftrightarrow\) x = 54 : 3
\(\Leftrightarrow\) x = 18.
Vậy x = 18.
I) 4824 : (4x + 137) = |-59| + (-35)
\(\Leftrightarrow\) 4824 :(4x + 137) = 59 + (-35)
\(\Leftrightarrow\) 4824 :(4x + 137) = 24
\(\Leftrightarrow\) 4x + 137 = 4824 : 24
\(\Leftrightarrow\) 4x + 137 = 201
\(\Leftrightarrow\) 4x = 201 - 137
\(\Leftrightarrow\) 4x = 64
\(\Leftrightarrow\) x = 64 : 4
\(\Leftrightarrow\) x = 16.
Vậy x = 16.
c) |-123| - 5(x - 3) = (-28) + 66
\(\Leftrightarrow\) 123 - 5(x - 3) = 38
\(\Leftrightarrow\) 5(x - 3) = 123 - 38
\(\Leftrightarrow\) 5(x - 3) = 85
\(\Leftrightarrow\) x - 3 = 85 : 5
\(\Leftrightarrow\) x - 3 = 17
\(\Leftrightarrow\) x = 17 + 3
\(\Leftrightarrow\) x = 20.
Vậy x = 20.
m) 7x - 4 . 6 = 2058
\(\Leftrightarrow\) 7x - 24 = 2058
\(\Leftrightarrow\) 7x = 2058 + 24
\(\Leftrightarrow\) 7x = 2082
\(\Leftrightarrow\) x = 2082 : 7
\(\Leftrightarrow\) x = \(\frac{2058}{7}\).
Vậy x = \(\frac{2058}{7}\).
Phần b) ra phân số nên mình để mai làm và cả những bài còn lại nữa.
Chúc bạn học tốt !!!
---------------NHANH NHA MK ĐANG CẦN GẤP--------------
-----------------------------------------------------
Bài 1:
\(a,A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\\ A=\left(1+2\right)\left(2+2^3+...+2^{2009}\right)=3\left(2+...+2^{2009}\right)⋮3\\ A=\left(2+2^2+2^3\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\\ A=\left(1+2+2^2\right)\left(2+...+2^{2008}\right)=7\left(2+...+2^{2008}\right)⋮7\)
\(b,\left(\text{sửa lại đề}\right)B=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\\ B=\left(1+3\right)\left(3+3^3+...+3^{2009}\right)=4\left(3+3^3+...+3^{2009}\right)⋮4\\ B=\left(3+3^2+3^3\right)+...+\left(3^{2008}+3^{2009}+3^{2010}\right)\\ B=\left(1+3+3^2\right)\left(3+...+3^{2008}\right)=13\left(3+...+3^{2008}\right)⋮13\)
Bài 2:
\(a,\Rightarrow2A=2+2^2+...+2^{2012}\\ \Rightarrow2A-A=2+2^2+...+2^{2012}-1-2-2^2-...-2^{2011}\\ \Rightarrow A=2^{2012}-1>2^{2011}-1=B\\ b,A=\left(2020-1\right)\left(2020+1\right)=2020^2-2020+2020-1=2020^2-1< B\)
a)\(...A=\dfrac{2^{50+1}-1}{2-1}=2^{51}-1\)
b) \(...\Rightarrow B=\dfrac{3^{80+1}-1}{3-1}=\dfrac{3^{81}-1}{2}\)
c) \(...\Rightarrow C+1=1+4+4^2+4^3+...+4^{49}\)
\(\Rightarrow C+1=\dfrac{4^{49+1}-1}{4-1}=\dfrac{4^{50}-1}{3}\)
\(\Rightarrow C=\dfrac{4^{50}-1}{3}-1=\dfrac{4^{50}-4}{3}=\dfrac{4\left(4^{49}-1\right)}{3}\)
Tương tự câu d,e,f bạn tự làm nhé