K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
16 tháng 6 2021

Ta có tổng quát: \(1-\frac{1}{n\times n}=\frac{\left(n-1\right)\times\left(n+1\right)}{n\times n}\).

Chứng minh: \(1-\frac{1}{n\times n}=\frac{n\times n-1}{n\times n}=\frac{n\times n+n-n-1}{n\times n}=\frac{n\times\left(n+1\right)-\left(n+1\right)}{n\times n}=\frac{\left(n-1\right)\times\left(n+1\right)}{n\times n}\).

Áp dụng ta được: 

\(A=\left(1-\frac{1}{2\times2}\right)\times\left(1-\frac{1}{3\times3}\right)\times...\times\left(1-\frac{1}{100\times100}\right)\)

\(=\frac{1\times3}{2\times2}\times\frac{2\times4}{3\times3}\times\frac{3\times5}{4\times4}\times...\times\frac{99\times101}{100\times100}\)

\(=\frac{\left(1\times2\times3\times...\times99\right)\times\left(3\times4\times5\times...\times101\right)}{\left(2\times3\times4\times...\times100\right)\times\left(2\times3\times4\times...\times100\right)}\)

\(=\frac{1\times101}{100\times2}=\frac{101}{200}\)

11 tháng 8 2016

 Ta có : 1/[n x (n - 1)] = [(n - 1) - n] / [n x (n - 1)] = 1/n - 1/(n - 1) 
Áp dụng : 1/(1x2) + 1/(2x3) + 1/(3x4) + ... + 1/(48x49) + 1/(49x50) 
= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/48 - 1/49 + 1/49 - 1/50 
= 1 - 1/50 < 1 
Vậy : 1/(1x2) + 1/(2x3) + 1/(3x4) + ... + 1/(48x49) + 1/(49x50) < 1 
Ta có : 1/(n x n) < 1/[(n - 1) x n] 
1/(2x2) < 1/(1x2) 
1/(3x3) < 1/(2x3) 
1/(4x4) < 1/(3x4) 
............. 
1/(49x49) < 1/(49x49) 
1/(50x50) < 1/(49x50) 
=> 1/(2x2) + 1/(3x3) + 1/(4x4) + ... 1/(49x49) + 1/(50x50) < 1/(1x2) + 1/(2x3) + 1/(3x4) + ... + 1/(48x49) + 1/(49x50) < 1 
Vậy 1/(2x2) + 1/(3x3) + 1/(4x4) + ... 1/(49x49) + 1/(50x50) < 1

11 tháng 8 2016

Đặt B=1/1*2+1/2*3+...+1/99*100 

Ta thấy:

A=1/2*2+1/3*3+...+1/100*100<B=1/1*2+1/2*3+...+1/99*100   (1)

Ta lại có: 

B=1/1*2+1/2*3+...+1/99*100 

=1-1/2+1/2-1/3+...+1/99-1/100

=1-1/100<1 (2)

Từ (1) và (2) ta có: A<B<1 <=>A<1

 

13 tháng 8 2016

A= \(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{100}=\frac{99}{100}\)

=> A= \(\frac{99}{100}>\frac{25}{26}\)

25 tháng 8 2017

A=1+1+1+...+1

A=100x1

A=100

11 tháng 8 2016

A = 1

nha bạn  mình chắc chắn

11 tháng 8 2016

nhưng cách lm như têk nào hả bạn

AH
Akai Haruma
Giáo viên
31 tháng 8 2023

Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mn hiểu đề của bạn hơn.

6 tháng 4 2021

a) 

\(\left(1-\dfrac{1}{5}\right)x\left(1-\dfrac{2}{5}\right)x...x\left(1-\dfrac{9}{5}\right)\\ =\left(1-\dfrac{1}{5}\right)x...x\left(1-\dfrac{5}{5}\right)x...x\left(1-\dfrac{9}{5}\right)\\ =\left(1-\dfrac{1}{5}\right)x...x0x...x\left(1-\dfrac{9}{5}\right)=0\)

x là nhân nhé :)) 

 

b)

\(\dfrac{1}{2}x\dfrac{2}{3}x...x\dfrac{9}{10}\\ =\dfrac{1x2x...x9}{2x3x...x10}=\dfrac{2x3x...x9}{2x3x...x9x10}=\dfrac{1}{10}\)

24 tháng 6 2017

Ta có :

\(A=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+.................+\dfrac{1}{99.99}+\dfrac{1}{100.100}\)

Ta thấy :

\(\dfrac{1}{2.2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3.3}< \dfrac{1}{2.3}\)

.............................

\(\dfrac{1}{99.99}< \dfrac{1}{98.99}\)

\(\dfrac{1}{100.100}< \dfrac{1}{99.100}\)

\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+..................+\dfrac{1}{98.99}+\dfrac{1}{99.100}\)

\(\Rightarrow A< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...........+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\)

\(\Rightarrow A< 1-\dfrac{1}{100}=\dfrac{99}{100}\)

\(\Rightarrow A< \dfrac{99}{100}\)

24 tháng 6 2017

\(A=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+.....+\dfrac{1}{99.99}+\dfrac{1}{100.100}\)

\(A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.....+\dfrac{1}{98.99}+\dfrac{1}{99.100}\)
\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\)

\(A< 1-\dfrac{1}{100}\)

\(A< \dfrac{99}{100}\)

\(A< B\)

20 tháng 3 2015

bn giở sách phát triển nâng cao ra là có mà

20 tháng 3 2015

ta đặt vế trái là A ta có:

A=1/2.2 .(1+1/2.2+1/3.3+1/4.4+...+1/50.50)

A< 1/2.2.(1+1/1.2+1/2.3+1/3.4+1/4.5+...+1/49.50)

A< 1/2.2.(1+1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+....+1/49-1/50)

A< 1/2.2.(1+1-150)

A< 1/2.2.99/50

A< 1/4.99/50

A< 99/200<100/200=1/2

=>A<1/2

23 tháng 8 2018

 nào lm đúng nhanh nhất mk cho  2 k lun

23 tháng 8 2018

b1. 456 = 10.(40+5)+6

A = 10( 44.....440 + 55....55) + 66..66    (... 111 số)

=499.....9950 + 66...66     (... 111 số 9 và 111 số 6)

= 55....5516 (....111 số 5)

b2. A - B = 1+2 + 3 + 4 +....+98 = 49 x100 + 51 = 4951 

\(A=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{2021.2021}\)

\(=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2021^2}\)

Xét : \(\frac{1}{k^2}\left(k\inℕ^∗\right)\)

\(=\frac{4}{4k^2}< \frac{4}{4k^2-1}=\frac{4}{\left(2k-1\right)\left(2k+1\right)}==2\left(\frac{1}{2k-1}-\frac{1}{2k+1}\right)\)

Áp dụng cho biểu thức A,ta có :

\(A< 2\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{4041}-\frac{1}{4023}\right)\)

\(=2\left(\frac{1}{3}-\frac{1}{4023}\right)=\frac{2}{3}-\frac{2}{4023}< \frac{2}{3}< \frac{3}{4}\)

18 tháng 7 2021

Yuriko

Cách này khó hiểu quá