Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-5x+6=\left(x-2\right)\left(x-3\right)\)
\(x^2-7x+12=\left(x-2\right)\left(x-5\right)\)
\(x^2+x-12=\left(x-5\right)\left(x+6\right)\)
\(x^2-9x+20=\left(x-4\right)\left(x-5\right)\)
a) \(\frac{x+\frac{2\left(3-x\right)}{5}}{14}-\frac{5x-4\left(x-1\right)}{24}=\frac{7x+2+\frac{9-3x}{5}}{12}+\frac{2}{3}\)
<=> \(\frac{5x+2\left(3-x\right)}{70}-\frac{5x-4\left(x-1\right)}{24}=\frac{35x+10+9-3x}{60}+\frac{2}{3}\)
<=> \(12\left(5x+6-2x\right)-35\left(5x-4x+4\right)\)
<=> \(14\left(35x+10+9-3x\right)+280.2\) <=> \(12\left(3x+6\right)-35\left(x+4\right)\)
<=> \(14\left(32x+19\right)+560\)
<=> \(36x+72-35x-140=448x+226+560\)
<=> \(-447x=894\)
<=> x = -2
a) \(x^2+7x+12\)
\(=x^2+3x+4x+12\)
\(=x\left(x+3\right)+4\left(x+3\right)\)
\(=\left(x+3\right)\left(x+4\right)\)
b) \(3x^2-5x+2\)
\(=3x^2-3x-2x+2\)
\(=3x\left(x-1\right)-2\left(x-1\right)\)
\(=\left(x-1\right)\left(3x-2\right)\)
Trả lời:
7, 5( x + y )2 + 15( x + y )
= 5( x + y )( x + y + 3 )
9, 7x( y - 4 )2 - ( 4 - y )3
= 7x ( 4 - y )2 - ( 4 - y )
= ( 4 - y )2 ( 7x - 4 + y )
11, ( x + 1 )( y - 2 ) - ( 2 - y )2
= ( x + 1 )( y - 2 ) - ( y - 2 )2
= ( y - 2 )( x + 1 - y + 2 )
= ( y - 2 )( x - y + 3 )
8, 9x ( x - y ) - 10 ( y - x )2
= 9x ( x - y ) - 10 ( x - y )2
= ( x - y )[ ( 9x - 10 ( x - y ) ]
= ( x - y )( 9x - 10x + 10y )
= ( x - y )( 10y - x )
10, ( a - b )2 - ( a + b )( b - a )
= ( b - a )2 - ( a + b )( b - a )
= ( b - a )( b - a - a - b )
= - 2a( b - a )
= 2a ( a - b )
12, 2x ( x - 3 ) + y ( x - 3 ) + ( 3 - x )
= 2x ( x - 3 ) + y ( x - 3 ) - ( x - 3 )
= ( x - 3 )( 2x + y - 1 )
`@` `\text {Ans}`
`\downarrow`
\(9x^{10}-7x^9=0\)
`\Leftrightarrow x^9(9x-7)=0`
`\Leftrightarrow `\(\left[{}\begin{matrix}x^9=0\\9x-7=0\end{matrix}\right.\)
`\Leftrightarrow `\(\left[{}\begin{matrix}x=0\\9x=7\end{matrix}\right.\)
`\Leftrightarrow `\(\left[{}\begin{matrix}x=0\\x=\dfrac{7}{9}\end{matrix}\right.\)
Vậy, nghiệm của đa thức là `x \in {0; 7/9}.`
F(\(x\)) = 9\(x^{10}\) - 7\(x^9\)
Nghiệm của F(\(x\)) là giá trị của \(x\) thỏa mãn F(\(x\)) = 0
⇔ 9\(x^{10}\) - 7\(x^9\) = 0
⇒ \(x^9\)\(\times\)(9\(x\) - 7) = 0
⇒ \(\left[{}\begin{matrix}x^9=0\\9x-7=0\end{matrix}\right.\)
⇒\(\left[{}\begin{matrix}x=0\\9x=7\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}x=0\\x=\dfrac{7}{9}\end{matrix}\right.\)
Vậy nghiệm của 9\(x^{10}\) - 7\(x^9\) là : \(x\) \(\in\){0 ; \(\dfrac{7}{9}\)}