Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 7\(x\).(2\(x\) + 10) = 0
\(\left[{}\begin{matrix}x=0\\2x+10=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\2x=-10\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-10:2\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Vậy \(x\in\){-5; 0}
b, - 9\(x\) : (2\(x\) - 10) = 0
- 9\(x\) = 0
\(x\) = 0
c, (4 - \(x\)).(\(x\) + 3) = 0
\(\left[{}\begin{matrix}4-x=0\\x+3=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)
Vậy \(x\in\) {-3; 4}
d, (\(x\) + 2023).(\(x\) - 2024) = 0
\(\left[{}\begin{matrix}x+2023=0\\x-2024=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-2023\\x=2024\end{matrix}\right.\)
Vậy \(x\) \(\in\) {-2023; 2024}
a, 7\(x\).(2\(x\) + 10) =0
\(\left[{}\begin{matrix}x=0\\2x+10=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\2x=-10\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Vậy \(x\in\) {-5; 0}
b, -9\(x\) : (2\(x\) - 10) = 0
9\(x\) = 0
\(x\) = 0
c, (4 - \(x\)).(\(x\) + 3) = 0
\(\left[{}\begin{matrix}4-x=0\\x+3=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)
Vậy \(x\in\) {-3; 4}
a. 2020 ( 2x - 4 ) = 0
<=> 2x - 4 = 0
<=> 2x = 4
<=> x = 2
b. ( 3x - 6 ) ( 9x + 10 ) ( 8 - x ) = 0
<=> 3x - 6 = 0 hoặc 9x + 10 = 0 hoặc 8 - x = 0
<=> 3x = 6 hoặc 9x = - 10 hoặc x = 8
<=> x = 2 hoặc x = - 10/9 hoặc x = 8
c. 7x - 2x = 3425
<=> 5x = 3425
<=> x = 685
d. x2 - 7x = 0
<=> x ( x - 7 ) = 0
<=> x = 0 hoặc x - 7 = 0
<=> x = 0 hoặc x = 7
a)16. x2 = 64
x2 = 64 : 16
x2 = 4
x2 = 22
⇒ x = 2
b) (5.x - 2) - 64 = -36
(5.x - 2) = -36 + 64
5.x - 2 = 28
5.x = 28 + 2
5.x = 30
x = 30 : 5
x = 6
c) (2x - 10).(5 - x) = 0
TH1: 2x - 10 = 0
2x = 0 + 10
2x = 10
x = 10 : 2
x = 5
TH2: 5 - x = 0
x = 5 - 0
x = 5
⇒ Vậy x = 5.
\(3x.\left(x-3\right)+\left(x-3\right)=0\)
\(\left(3x+1\right).\left(x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=3\\3x=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-\frac{1}{3}\end{cases}}\)
vậy \(x=3,x=-\frac{1}{3}\)
\(b,x^3-9x-2x^2+18=0\)
\(x.\left(x^2-9\right)-2.\left(x^2-9\right)=0\)
\(\left(x-2\right).\left(x^2-9\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x^2=9\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=3,x=-3\end{cases}}\)
vậy \(x=2,x=3,x=-3\)
\(\left(9x+1\right)\left(5+2x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}9x+1=0\\5+2x+0\end{cases}\Leftrightarrow\orbr{\begin{cases}9x=-1\\2x=-5\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{-1}{9}\\x=\frac{-5}{2}\end{cases}}}\)
Vậy x = -1/9 hoặc x = -5/2
\(\left(9x+1\right)\left(5+2x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}9x+1=0\\5+2x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{9}\\x=-\frac{5}{2}\end{cases}}\)
\(2x^2+3x+1\)
\(=2x^2+2x+x+1\)
\(=2x\left(x+1\right)+\left(x+1\right)\)
\(=\left(x+1\right)\left(2x+1\right)\)
\(\left(9x-36\right)\left(2x-10\right)=0\\9.\left(x-4\right).2.\left(x-5\right)=0\\ 18.\left(x-4\right).\left(x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-5=0\end{matrix}\right.\Leftrightarrow \left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)