K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2016

bằng 4995 nha

13 tháng 8 2016

\(999+888+777+666+555+444+333+222+111\)

\(=\left(999+111\right)+\left(888+222\right)+\left(777+333\right)+\left(666+444\right)+555\)

\(=1110+1110+1110+1110+555\)

\(=\left(1110\times4\right)+555\)

\(=4440+555\)

\(=4995\)

14 tháng 11 2018

Áp dụng \(\sqrt{1+\dfrac{1}{n^2}+\dfrac{1}{\left(n+1\right)^2}}=1+\dfrac{1}{n}-\dfrac{1}{n+1}\) ta có:

\(x=\sqrt{1+\dfrac{1}{\left(\dfrac{1}{999}\right)^2}+\dfrac{1}{\left(\dfrac{1}{999}+1\right)^2}}+\dfrac{999}{1000}=1+\dfrac{1}{\dfrac{1}{999}}-\dfrac{1}{\dfrac{1}{999}+1}+\dfrac{999}{1000}=1+999-\dfrac{999}{1000}+\dfrac{999}{1000}=1000\)

14 tháng 11 2018

???

Đề bài khó quá làm sao đây

khocroikhocroikhocroi

26 tháng 7 2018

\(P=\sqrt{1+999^2+\dfrac{999^2}{1000^2}+\dfrac{999}{1000}}\)

\(\Leftrightarrow\)\(\sqrt{\dfrac{1999}{1000}+999^2+\dfrac{999^2}{1000^2}}\)

5 tháng 8 2017

~ Viết các số 111,112,113,...,887,888 liên tiếp nhau ta được số - Số học - Diễn đàn Toán học ~

2 tháng 9 2018

\(VT=\sqrt{\left(\frac{1}{a}+\frac{1}{b}-\frac{1}{a+b}\right)^2-\left(\frac{2}{ab}-\frac{2}{a\left(a+b\right)}-\frac{2}{b\left(a+b\right)}\right)}\)

\(=\sqrt{\left(\frac{1}{a}+\frac{1}{b}-\frac{1}{a+b}\right)^2-\frac{2\left(a+b\right)-2b-2a}{ab\left(a+b\right)}}\)

\(=\sqrt{\left(\frac{1}{a}+\frac{1}{b}-\frac{1}{a+b}\right)^2}=\left|\frac{1}{a}+\frac{1}{b}-\frac{1}{a+b}\right|=VP\)

Áp dụng tính M: \(M=\sqrt{1+999^2+\frac{999^2}{1000^2}}+\frac{999}{1000}\)

\(M=999.\sqrt{\frac{1}{999^2}+\frac{1}{1^2}+\frac{1}{\left(999+1\right)^2}}+\frac{999}{1000}\)

\(M=999.\left(\frac{1}{1}+\frac{1}{999}-\frac{1}{1000}\right)+\frac{999}{1000}\)

\(M=999+1-\frac{999}{1000}+\frac{999}{1000}=1000\)

Vậy M=1000.

6 tháng 8 2020

- Gỉa sử \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}}=\left|\frac{1}{a}+\frac{1}{b}-\frac{1}{a+b}\right|\)

=> \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}=\left(\left|\frac{1}{a}+\frac{1}{b}-\frac{1}{a+b}\right|\right)^2\)

=> \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}+\frac{2}{ab}-\frac{2}{b\left(a+b\right)}-\frac{2}{a\left(a+b\right)}\)

=> \(\frac{2}{ab}-\frac{2}{b\left(a+b\right)}-\frac{2}{a\left(a+b\right)}=0\)

=> \(\frac{a+b}{ab\left(a+b\right)}-\frac{a}{ab\left(a+b\right)}-\frac{b}{ab\left(a+b\right)}=0\)

=> \(\frac{a+b-a-b}{ab\left(a+b\right)}=\frac{0}{ab\left(a+b\right)}=0\) (Luôn đúng )

Vậy ....

- Áp dụng : \(M=\sqrt{1+999^2+\frac{999^2}{1000^2}}+\frac{999}{1000}\)

=> \(M=\sqrt{1+999^2+\frac{999^2}{\left(1+999\right)^2}}+\frac{999}{1000}\) ( với \(a=1,b=999\) )

=> \(M=1+999-\frac{999}{1000}+\frac{999}{1000}=1000\)