Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d)
đặt A = 1 + 2 + 22 + ... + 280
2A = 2 + 22 + 23 + ... + 281
2A - A = ( 2 + 22 + 23 + ... + 281 ) - ( 1 + 2 + 22 + ... + 280 )
A = 281 - 1 > 281 - 2
e)
đặt \(A=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{899}{900}\)
\(A=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+\left(1-\frac{1}{16}\right)+...+\left(1-\frac{1}{900}\right)\)
\(A=\left(1+1+1+...+1\right)-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{900}\right)\)
\(A=29-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{900}\right)\)
đặt \(B=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{900}\)
\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{30^2}\)
\(B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{29.30}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{29}-\frac{1}{30}\)
\(=1-\frac{1}{30}=\frac{29}{30}< 1\)
\(\Rightarrow A< 29\)
So sánh C và D biết
C=1+13+13^2+...+13^13/1+13+13^2+...+13^12
D=1+11+11^2+...+11^13/1+11+11^2+...+11^12
a) \(\frac{8}{9}=1-\frac{1}{9}\)
\(\frac{108}{109}=1-\frac{1}{109}\)
Vì \(\frac{1}{9}>\frac{1}{109}\)
Nên \(1-\frac{1}{9}< 1-\frac{1}{109}\)
Vậy \(\frac{8}{9}< \frac{108}{109}\)
b)
\(\frac{97}{100}=\frac{97\cdot99}{100\cdot99}\)
\(\frac{98}{99}=\frac{98\cdot100}{99\cdot100}\)
\(\Rightarrow\frac{97}{100}< \frac{98}{99}\)
\(\frac{29}{9}.\frac{109}{7}-\frac{29}{9}.\frac{57}{7}+\frac{29}{9}.\frac{12}{7}-\frac{29}{9}.\frac{1}{7}\)
= \(\frac{29}{9}.\left(\frac{109}{7}-\frac{57}{7}+\frac{12}{7}-\frac{1}{7}\right)\)
= \(\frac{29}{9}.\frac{63}{7}\)
=\(\frac{29}{9}.9\)
=\(\frac{29.9}{9}\)
=\(\frac{261}{9}\)
= \(29\)
hứ 7 nộp rùi giải giúp mình à
Được cập nhật 10 giờ trước (09:01)
Toán lớp 6
Chau Nguyen Van 9 giờ trước (09:40)
Báo cáo sai phạm
299 .1097 −299 .577 +299 .127 −299 .17
= 299 .(1097 −577 +127 −17 )
= 299 .637
=299 .9
=29.99
=2619
=
\(\frac{9}{1.2}+\frac{9}{2.3}+....+\frac{9}{98.99}+\frac{9}{99.100}\)
\(=9.\frac{1}{1.2}+9.\frac{1}{2.3}+....+9.\frac{1}{98.99}+9.\frac{1}{99.100}\)
\(=9.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(=9.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(=9.\left(1-\frac{1}{100}\right)=9.\frac{99}{100}=\frac{891}{100}\)
Ta có :
\(8^9< 9^9\)
\(7^9< 9^9\)
\(6^9< 9^9\)
\(......\)
\(1^9< 9^9\)
Cộng vế với vế ta được :
\(1^9+2^9+3^9+...+8^9< 9^9+9^9+9^9+...+9^9\) ( có tất cả 8 chữ số \(9^9\) )
\(\Rightarrow1^9+2^9+3^9+...+8^9< 8.9^9< 9.9^9=9^{10}\)
\(\Rightarrow1^9+2^9+3^9+...+8^9< 9^{10}\)
a, \(\frac{-3}{5}+\frac{7}{21}+\frac{-4}{5}+\frac{7}{5}\)
\(=\left(\frac{-3}{5}+\frac{-4}{5}+\frac{7}{5}\right)+\frac{7}{21}\)
\(=0+\frac{7}{21}\)
\(=\frac{7}{21}\)
\(=\frac{1}{3}\)
b, \(\frac{8}{9}+\frac{1}{9}.\frac{7}{9}+\frac{1}{9}.\frac{2}{9}\)
\(=\frac{8}{9}+\frac{1}{9}.\left(\frac{7}{9}+\frac{2}{9}\right)\)
\(=\frac{8}{9}+\frac{1}{9}.1\)
\(=\frac{8}{9}+\frac{1}{9}\)
\(=1\)
a) \(\frac{-3}{5}\)+\(\frac{7}{21}\)+\(\frac{-4}{5}\)+\(\frac{7}{5}\)
=(\(\frac{-3}{5}\)+\(\frac{-4}{5}\)+\(\frac{7}{5}\)) +\(\frac{7}{21}\)
= 0+
A = \(\dfrac{9}{1.2}\)+ \(\dfrac{9}{2.3}\)+\(\dfrac{9}{3.4}\)+......+\(\dfrac{99}{99.100}\)
A = 9( \(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+.......+\(\dfrac{1}{99.100}\))
A = 9( 1-\(\dfrac{1}{2}\)+\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+........+\(\dfrac{1}{99}\)-\(\dfrac{1}{100}\))
A = 9 ( 1 - \(\dfrac{1}{100}\))
A = 9 . \(\dfrac{99}{100}\)
A = \(\dfrac{891}{100}\)
\(A=\dfrac{9}{1\cdot2}+\dfrac{9}{2\cdot3}+\dfrac{9}{3\cdot4}+...+\dfrac{9}{98\cdot99}+\dfrac{9}{99\cdot100}\)
\(=9\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{98\cdot99}+\dfrac{1}{99\cdot100}\right)\)
\(=9\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(=9\left(1-\dfrac{1}{100}\right)\)
\(=9\left(\dfrac{100}{100}-\dfrac{1}{100}\right)\)
\(=9\cdot\dfrac{99}{100}\)
\(=\dfrac{891}{100}\)
9-[109+(-9)]
=9-(109-9)
=9-100
=-91
Ta có : 9^9-[109+(-9)]
=9^9-109+9
=9^9-100