Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A+5=x^2+4+y^2+1+\frac{1}{x}+\frac{1}{x+y}=4x+2y+...=\frac{x+y}{9}+\frac{1}{x+y}+\frac{1}{x}+\frac{x}{4}+\frac{17}{9}\left(x+y\right)+\frac{7}{4}x\ge\frac{65}{6}=>A\ge\frac{35}{6}\\ .\)Bài bất :)
2/ \(\hept{\begin{cases}\frac{xy}{2}+\frac{5}{2x+y-xy}=5\\2x+y+\frac{10}{xy}=4+xy\end{cases}}\)
Đặt \(\hept{\begin{cases}\frac{xy}{2}=a\\2x+y-xy=b\end{cases}}\)
Thì ta có hệ:
\(\hept{\begin{cases}a+\frac{5}{b}=5\\b+\frac{5}{a}=4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=5-\frac{5}{b}\left(1\right)\\b+\frac{5}{5-\frac{5}{b}}=4\left(2\right)\end{cases}}\)
\(\Rightarrow\left(2\right)\Leftrightarrow b^2-4b+4=0\)
\(\Leftrightarrow b=2\)
\(\Rightarrow a=\frac{5}{2}\)
\(\Rightarrow\hept{\begin{cases}\frac{xy}{2}=\frac{5}{2}\\2x+y-xy=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}xy=5\\2x+y=7\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\y=5\end{cases}or\orbr{\begin{cases}x=\frac{5}{2}\\y=2\end{cases}}}\)
a) Sửa đề: C/m tứ giác BEHC nội tiếp
Xét tứ giác BEHC có
\(\widehat{BEC}=\widehat{BHC}\left(=90^0\right)\)
\(\widehat{BEC}\) và \(\widehat{BHC}\) là hai góc cùng nhìn cạnh BC
Do đó: BEHC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
là cái gì?
????????