\(|97\frac{2}{3}-125\frac{3}{5}|+97\frac{2}{5}-125\frac{1}{3}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2019

\(\frac{\frac{125}{8}+\frac{125}{97}+\frac{125}{576}+\frac{250}{991}}{\frac{25}{8}+\frac{25}{97}+\frac{25}{576}+\frac{50}{991}}\)=\(\frac{250.\left(\frac{1}{8}+\frac{1}{97}+\frac{1}{576}+\frac{1}{991}\right)}{50.\left(\frac{1}{8}+\frac{1}{97}+\frac{1}{576}+\frac{1}{991}\right)}\)=\(\frac{250}{50}\)=5

29 tháng 3 2019

Nhớ tick

AH
Akai Haruma
Giáo viên
12 tháng 10 2024

Lời giải:

** Sửa đề: Chỗ $\frac{1}{1}$ ở mẫu chuyển thành $\frac{1}{2}$

$\frac{1}{1}.99+\frac{1}{3}.97+\frac{1}{5}.95+....+\frac{1}{97}.3+\frac{1}{99}.1$

$=50+(\frac{97}{3}+1)+(\frac{95}{5}+1)+....+(\frac{3}{97}+1)+(\frac{1}{99}+1)$

$=50+\frac{100}{3}+\frac{100}{5}+...+\frac{100}{97}+\frac{100}{99}$
$=100(\frac{1}{2}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99})$

\(P=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}}{100(\frac{1}{2}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99})}=\frac{1}{100}\)

14 tháng 3 2018

Bài 1:

\(A=\frac{\frac{1}{12}-\frac{2}{9}-1}{\frac{5}{18}+\frac{-3}{4}-\frac{1}{9}}\)

\(A=\frac{\frac{1}{12}-\frac{2}{9}-\frac{18}{18}}{\frac{5}{18}+\frac{9}{12}-\frac{1}{9}}\)

\(A=\frac{1}{3}-\frac{18}{5}\)\(A=\frac{5}{15}-\frac{54}{15}\)

\(A=\frac{-49}{15}\)

28 tháng 5 2017

a) Đặt B = \(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}\)

\(=\left(1+\frac{1}{99}\right)+\left(\frac{1}{3}+\frac{1}{97}\right)+...+\left(\frac{1}{49}+\frac{1}{51}\right)\)

\(=\frac{100}{1.99}+\frac{100}{3.97}+...+\frac{100}{49.51}\)

\(=100\left(\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{99.1}\right)\)

Đặt C = \(\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{99.1}\)

\(=\left(\frac{1}{1.99}+\frac{1}{99.1}\right)+\left(\frac{1}{3.97}+\frac{1}{97.3}\right)+...+\left(\frac{1}{49.51}+\frac{1}{51.49}\right)\)

\(=2\cdot\frac{1}{1.99}+2\cdot\frac{1}{3.97}+...+2\cdot\frac{1}{49.51}\)

\(=2\left(\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{49.51}\right)\)

Thay B và C vào A 

\(\Rightarrow A=\frac{100\left(\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{49.51}\right)}{2\left(\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{49.51}\right)}=\frac{100}{2}=50\)

b) Đặt E = \(\frac{99}{1}+\frac{98}{2}+\frac{97}{3}+...+\frac{1}{99}\)

\(=\left(\frac{98}{2}+1\right)+\left(\frac{97}{3}+1\right)+...+\left(\frac{1}{99}+1\right)+1\)

\(=\frac{100}{2}+\frac{100}{3}+...+\frac{100}{99}+\frac{100}{100}\)

\(=100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)\)

Thay E vào B

\(\Rightarrow B=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)}=\frac{1}{100}\)

28 tháng 5 2017

a)50

b)1/100

tk ủng hộ nha