Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: A là tập hợp 32 đội tham gia World Cup 2018.
B là tập hợp 16 đội sau vòng thi đấu bảng (chọn từ 32 đội của tập hợp A sau thi thi đấu theo bảng)
Rõ ràng mỗi phần tử (mỗi đội) của tập hợp B cũng là một phần tử (một đội) của tập hợp A.
Do đó: \(B \subset A\)
Tương tự: Từ 16 đội của B, sau khi đấu loại trực tiếp, còn lại 8 đội vào tứ kết kí hiệu là tập hợp C
Do đó: \(C \subset B\)
Vậy \(C \subset B \subset A\).
b) Tập hợp \(A \cap C\) gồm các đội bóng vừa thuộc 32 đội tham gia World Cup 2018, vừa thuộc 8 đội thi đấu vòng tứ kết, chính là 8 đội của tập hợp C.
Tập hợp \(B \cap C\) gồm các đội bóng vừa thuộc 16 đội sau vòng thi đấu bảng, vừa thuộc 8 đội thi đấu vòng tứ kết, chính là 8 đội của tập hợp C.
Vậy \(A \cap C = B \cap C = C\)
c) Tập hợp \(A\,{\rm{\backslash }}\,B\) gồm các đội thuộc 32 đội tham gia World Cup 2018 nhưng không thuộc 16 đội sau vòng thi đấu bảng.
Vậy đó là 16 đội không vượt qua vòng thi đấu bảng.
Nói cách khác: Tập hợp \(A\,{\rm{\backslash }}\,B\) gồm các đội bóng bị loại sau vòng đấu bảng.
Dựa vào các phép toán đã cho, ta có thể giải các phương trình và tìm giá trị của các biến. Hãy xem xét từng phép toán một:
u/ VxER:x>-2⇒x²>4: Phép toán này cho biết nếu x > -2, thì x² > 4. Điều này đúng vì nếu x > -2, thì x có thể là -1, 0, 1, 2, ... và x² sẽ luôn lớn hơn 4.
v/3neN:n +1chia hết cho 5: Phép toán này cho biết nếu n chia hết cho 3, thì n + 1 sẽ chia hết cho 5. Điều này không chính xác vì nếu n = 2, thì n không chia hết cho 3 và n + 1 không chia hết cho 5.
w/2k eZ:k? _1 chia hết cho 24: Phép toán này không rõ ràng. Có thể w chia hết cho 2 và k là một số nguyên, nhưng không có thông tin về _1 chia hết cho 24.
x/ VneN:n chia hết cho 9 → n chia hết cho 9: Phép toán này cho biết nếu n chia hết cho 9, thì x chắc chắn chia hết cho 9. Điều này đúng vì nếu n chia hết cho 9, thì x có thể là 9, 18, 27, ... và x sẽ chia hết cho 9.
Vậy, dựa vào các phép toán đã cho, ta có thể kết luận rằng:
Nếu x > -2, thì x² > 4.Nếu n chia hết cho 9, thì x chia hết cho 9.tìm 1 số có 3 chữ số biết rằng số đó trừ 8 chia hết cho 7 trừ 9 chia hết cho 8 trừ 10 chia hết cho 9
a,592 * là 2
b,595 * là 5
c, 590 * là 0
d,593 * là 3
e,591 * là 1
g,594 * là 4
chỉ là đáp án tham khảo thôi bạn còn nhiều đáp án khác nữaĂĂ
nhưng đây ko phải toán 10 hen
Gọi số đã cho là A.Ta có:
A = 4a + 3
= 17b + 9 (a,b,c thuộc N)
= 19c + 13
Mặt khác: A + 25 = 4a+3+25=4a+28=4(a+7)
=17b+9+25=17b+34=17(b+2)
=19c+13+25=19c+38=19(c+2)
Như vậy A+25 đồng thời chia hết cho 4,17,19.Mà (4;17;19)=1=>A+25 chia hết cho 1292.
=>A+25=1292k(k=1,2,3,....)=>A=1292k-25=1292k-1292+1267=1292(k-1)+1267.
Do 1267<1292 nên 1267 là số dư trong phép chia số đã cho A cho 1292.
= 10 (du 3)
=10 dư 3 nha